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Abstract. There considered the approach of the
linear econometric dependences parameters esti-
mating for the case of combining a set of special
conditions arising in the simulation process. These
conditions address the most important problems
met in practice when implementing a series of
classes of mathematical models, for the construc-
tion of which the matrix of explanatory variables
can be used. In most cases the vectors that make up
the matrix have a close correlation relationship;
this leads to the need of performing calculations
using a rank deficient matrix. There are also take
place violations of the Gauss-Markov theorem
condition. The list of above mentioned special
conditions is augmented by the additional model
parameters constraints. Cobb-Douglas's production
function and the Solow model are known econom-
ic problems of this type. In this research the need
to impose additional constraints on the model pa-
rameters is extended to a wider range of tasks. In
general, the economic formulation of the problem
with the specified features is presented.

Known ways to solve these tasks are discussed.
The authors’ approach proposed takes into account
the whole spectrum of these features. This ap-
proach is based on the application of pseudoran-
dom matrices and the use of singular matrix de-
composition. The use of proposed mathematical
tools makes it possible to improve the quality of
estimating model parameters while using real eco-
nomic processes data. The analytical definition is
found for the parameter evaluating vector of a line-
ar econometric model with all the above mentioned
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features. Analysis of the used definition provides
determination of the conditions that the matrix
must satisfy; this describes additional model pa-
rameters constraints. The term was also obtained to
estimate the variance of a linear econometric mod-
el parameters vector.

The results obtained can be used in machine
learning systems in the implementation of prob-
lems of econometric dependencies or discriminant
models.
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FORMULATION OF THE PROBLEM

The current state of society as a whole and
the economy in particular is characterized by a
digital information drastic increase. Therefore,
in recent decades, the most urgent issue has
been the search for adequate methods of vast
data sets analysis and processing. Generalizing
existing data analysis developments has led to
the creation of Data Mining techniques. In
most cases, Data Mining refers to a set of pro-
cedures for finding useful, non-trivial infor-
mation that is understandable and can be ap-
plied in decision-making processes. There are
several conditional options for Data Mining
tasks classifying. As a rule, among the basic
Data Mining tasks classes are the regression
construction and the classification of economic
objects. The tasks of regression constructing
establish a relation between a continuous vari-
able, which describes the behavior of an eco-
nomic indicator, depending on the selected list
of factors influence. The classification tasks
also determine the dependence of a particular
variable on the selected list of factors. Howev-
er, unlike regressions, the dependent variable
accepts only discrete values and can describe,
for example, some characteristics of economic
objects. For both specified task classes, the
initial data is a dimension matrix n X m con-

sisting of values for the m explanatory varia-
bles for each n object. Therefore, the imple-

mentation of methods for constructing mathe-
matical models of both classes of problems has
a common problem that is associated with the
requirements for the initial data array. The
problem is that there is a strong correlation
between two or more explanatory variables
(the multicollinearity phenomenon). Construc-
tion of mathematical models if such connec-
tion is neglected leads to significant negative
consequences, that is why special algorithms
have been developed to check for multicollin-
earity. In most cases, if there are close correla-
tion relationships between the explanatory var-
iables, some variables are removed from the
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initial data matrix so as to eliminate multicol-
linearity. However, maintaining a complete list
of factors when constructing a model can pro-
vide more valuable information, so very im-
portant are the approaches that allow an arbi-
trary matrix of explanatory variables to be
used to construct mathematical models. This
research describes the approach of construct-
ing linear econometric models for the case
where the matrix of explanatory variables is a
deficient one.

Let there be a linear relationship between
the variable Y  explaining variables
X; (j = 1,2, ...,m), m - the number of explana-
tory variables and = perturbation. Suppose that
there is a sample n of observations for the var-
iables ¥ and X; (j = 1,2,..,m) that each ob-

servation for each explanatory variable corre-
sponds x;; (i =1,n) - the value for i observa-
tion of jvariable.

Then the linear relationship between ¥ and
X; (j=1,2,..,m) can be represented as:

yi:ZLXUBJ.+si,i:1,2,...,n. (1)

Expression (1) in matrix form has the form:

Y = Xp+e 0
Y1 X1 X oo X
X, X X
where Y = %2 X =7 :22 am
yn an an Xnm
B, €
B= B:2 P €,
B €,

T matrices trans-

Denote also the XTand &
posed to X and =, respectively.

Let the following conditions be met:
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2. M(eg') =o*-E, E isasingle matrix, (4)
3. — X is a matrix whose elements are de-
termined numbers, 5)

4. rang X =m (where matrix X is a full

rank matrix). (6)

ANALYSIS OF THE RECENT RE-
SEARCHES AND PUBLICATIONS

There is virtually no doubt that only a slight
modification of the already known numerical
methods is required to solve the system of
general contravention (6). These modifications
are based on the following idea.

Let us solve system (1), (2) by any direct
method, let it be the Gauss method with the
choice of the principal element. If the matrix X

has an incomplete rank, then in the process of
real transformations we obtain a system in
which all the elements of the last rows will be
minor. We reject these equations and find the
solutions of the resulting system. They will
serve as an approximation, good enough to the
exact system.

On the basis of this idea a considerable
number of works was published [1-4]. All their
differences are related only to the use of vari-
ous transformations of the initial system and
the use of various criteria for the replacement
of "small" elements of the transformed zero
system. However, this idea did not immediate-
ly lead to the effective solution of systems of
algebraic equations linear of general form.
Moreover, the issue of the possibility of con-
structing a stable process of solving systems
with incomplete matrices in the conditions of
perturbation of the input data and the influence
of rounding errors has not been finally re-
solved recently. A positive result was obtained
only after a thorough study of the instability
mechanism and finding guaranteed means of
reducing its impact [3].

It is advisable to use unitary transfor-
mations of the initial system to find a normal
pseudo solution. But, unlike full-rank matrices
systems, the application of these transfor-
mations will no longer entail overall stability.

MiABOAHI TEXHONOCrIT ¢ 2020 Bun.10, 3-12
npomMucrioBa Ta UUBINbHa iHXeHepia

Thus, if the exact system matrix is incom-
plete, then the small values of the input data
perturbations and rounding errors will not nec-
essarily lead to the appearance in the system
transformation process of any rows or col-
umns, which consist entirely of the same small
elements. This is the main, but not the only,
difficulty in developing numerical methods for
solving systems with rank deficient matrices,
built on equivalent transformations of the orig-
inal system.

Another obstacle is the reasoning for fur-
ther transformations of those systems whose
matrices have rows or columns with small el-
ements.

If the system input data with a rank defi-
cient matrix is given with errors, no increase in
the accuracy of calculations and no transfor-
mations will guarantee the desired accuracy of
a normal pseudo-solution [3]. This requires the
involvement of additional information on the
exact task. But suppose, after the unitary trans-
formations, a system with small rows or col-
umns is obtained. Replacing these rows and
columns with zero is equivalent to a small per-
turbation of the initial system matrix. If we can
accurately find the normal pseudo-solution of
the resulting system, it will mean that the pro-
jection of the normal pseudo-solution of the
exact system on one of the subspaces drawn on
singular vectors will be calculated sufficiently
accurately. There is no reason to expect a bet-
ter result without additional information.

The need to use additional information to
solve unstable systems is interconnected with
some difficulties in designing the appropriate
computational algorithms.

TASK SETTING

When solving certain economic problems
on the basis of econometric models, it is nec-
essary to consider conditions that impose addi-
tional regression coefficients constraints.

Let us have an enterprise that produces
goods and uses m types of resources. The en-
terprise is characterized by a technological set

Z — R that describes all the possible sets of
resources needed to produce a given product.
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For example, the plural M © Z may be condi-
tioned by

X, =20, ax <x<bx, i=12,...m

where a,,b, — are given numbers 0<a, <b,,

1770
that is, the proportions of resources must be
within certain limits.
Let's have a production function

Y(X)=vIT7, X" (7)

where y>0, 4, =0, 4, =0,..., are unknown
parameters for which X7, 4, = 1.
Suppose ¥(X) - the amount of goods pro-

duced by the enterprise in the set of resources
X = (xy, x5,..,x,). One can consider the

task of determiningy = 0,4, =0,..., 4,, =0

> (YO0 =TI x)2 - min &

XeMcz

> (InY(X)-In y—iki Inx,)? —min

XeMcz i=1

with additional conditions

ky
> =1,
N
Z ki =1Z,,

i=k;+1

K
> A=z,

i=k,+1

L+ 2+t 7 =1.

m+1

m+1 !

For example, [1] when applying the classi-
cal Cobb-Douglas production function of a
form

Y =b,L°K" (8)

where ¥ — production volumes, L — labor
costs, K — capital costs, a,p, by — model pa-
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rameters, the need that considers the constant
production scale feedback is realized by intro-
ducing a o+ =1 constraint type.

PRESENTING THE MAIN CONTENT

There are two ways of considering such
limitations [1]. The first is to solve the prob-
lem without additional constraints. For the re-
sult obtained, we test the hypothesis that the
estimated coefficients satisfy the required con-
ditions.

The hypothesis is formulated as follows: for
the true values of the coefficients of the model,

a condition C"B=r s fulfilled, where C is a
vector of constants, which allows to describe
the existing additional conditions, p - the es-

timates of the model parameters found without
taking into account additional conditions, r -

the constant is given by the condition.
Using model parameter estimates, the value

C'P for which the value is checked is calcu-
lated

.__C'B-C'p

s JCT(XTX) '

where = is the standard error of the model per-

turbation.
To test the hypothesis in (9), * is substituted

instead of C'B. The obtained value is com-
pared to the critical t-distribution value with
n — k degrees of freedom.

The second way is to take into account the
additional constraint directly in the model pa-
rameter estimation process. In the simplest
cases, the regression equation can be trans-
formed so that an additional constraint will be
taken into account in the model structure itself.

(9)

Consider the case [1] of estimating the pa-
rameters (8) provided by o +p =1.

Logarithm (8) leads down to a linear de-
pendence of the form:
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y=b,+aX,+BX,+¢,
where y=InY, X, =InL, X, =InK..

Limitation a+pB =1 can be represented in
the form and directly included in the model:

y=b,+aX, +(1-a)X,+¢ (10)

For (10), we find the estimates of the pa-
rameters b, and a provided that the sum of the

squares of deviations is minimized [1].
> (¥ =y —aX, ~ (1-3)X,)* (11)

If any of the methods does not provide the
necessary accuracy for solving a system of lin-
ear algebraic equations, there is no reason to
expect that another method will produce better
results for the same system. Most likely, such
a system should be considered unstable. It is
known [1-4] that the redefined system pseudo-
solution (2) with a full rank matrix is the usual
solution of the system

XTXB=XTY

with a square non-degenerate X' X order ma-
trix m X m. Normal System Solution (1-2)

B=(X"X)XTY
It should be required >"" 7 —min.

Definition 1. The matrix X¥ (m X n) is

called the Moore-Penrose pseudorandom for a
matrix X if it satisfies the following four con-

ditions:

1 XXX =X" (12)
2. XXX =X (13)
3. XX _symmetric (14)
4. X*X _symmetric (15)
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It follows from  condition (12)
XIXXT=X"= XTXXTX =X"X if
X*X =P, then P?=P,. From condition (15)
P, is symmetric. So P, is an orthoprojector.

Similarly XX* =P, — orthoprojector. In addi-
tion, with XTXxT=x%=px*t=x"
X*p,=X%, And from that
XX*X=X=XR=X,PX=X, one can
prove that such a matrix X *always exists and
is unique [2]. If X is a non-degenerate square
matrix, then X* = X "obviously satisfies the
conditions (12-15). If X is rectangular and has
full rank, then X*=(X"X)"*X". One can

check that pseudo-inverse of the diagonal ma-
trix

o, 0 - 0
0 o, - O
2=|0 O
0 0 0
N 0
0 0 0

is a diagonal m X n matrix

6/ 0 - 0 0 - 0
|0 o, - 0 0 -0
=, 0. S

0 0 ' 0 - 0

, ;%20
where 6, ={
0, 0,=0

Next, we use a singular matrix arrangement
X [3].
X =uzy?
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where U is an orthogonal n X n matrix, V' is
an orthogonal m % m matrix, and I is a diago-
nal m X n matrix which has o, =0, if i #},
c,; 20. The columns of the U matrix are ei-
genvectors of the XX " matrix and the columns
of the IV matrix are eigenvectors XX . Using
(13) [2,3] we obtain

Xt =vztuT,

The least squares estimates of the parameter
Bin (2) are defined as the values B,,B,,...,B
minimizing

m?

L= Zin:lz::l(yi _ZT:1 Xiij)(yk -

. (16)
ijlxkjﬁj)ocik — min,

where the matrix A=||oy, | is a symmetric pos-
itively definite matrix. The solution (16)
B..B,.....B,, will be called the pseudo-solution
of problem (1), (2). The solution will be linear
with respect to v. In addition, provided (3) PlB
is an unbiased estimate Pfin (1). That is

M (RB)=PB.
The solution, generally speaking, will not
be the only one. We will require that the min-

imum amount be " 7. Then the solution

(16) is unique. Generally speaking, when con-
dition (4) is violated, unbiased estimates
[ cannot be obtained.

The case where for problem (1-2), without
taking into account the linear constraints, con-
dition (3) is not fulfilled is considered in [9]
forM(e) #0. Some compromise was found

between the bias value Band the value D(B).

The case where (2) is not fulfilled was consid-
ered by Aitken [10], who proposed the use of
the generalized least squares method, provided
that the matrix X is of complete rank. In this
work, Aitken's method extends to problem (1-
2), provided that there are linear constraints, as

well as that (6) is not fulfilled, but takes place
rangX =t < mand simultaneously

M(asT):DZGZ\N’ a7

where o is an unknown parameter, D W are

known symmetric positive definite order ma-
trices nxn. Then D makes it possible a repre-

sentation D = PPTwhere the matrix P is non-
degenerate positively defined. So, D = PP" so
thatP'DP'=E and P'P*=D". Let us

denote P'=B. The matrix D commutes
withB. From (17) it follows that

W*'=D"¢* W'=BB=0"BB.
Hence the covariance matrix

2
G, G,0,6, 6,06,61,
2
0,06,0 (¢} 0,0, 0
.
M(SS): 1‘212 .2 2‘r12n —
2

6,0,6,, 0,0,0,, ... o,

= oW,

where o’ =M (g?)=D(y,)is the dispersion
c,0,p; =M (geg;)=covyy;, Wis the known
weight matrix.

In this article we consider the general case

of linear constraints for problem (1), (2) in the
form:

r=Rp (18)

where ris a known vector column consisting
of g <melements, g —rangR

R js a known order matrix gxm.

It is important that the matrix R should
have the following property:
RK'K=R, RR =R

where P=K'K -
K =XT"BBX.

orthoprojector,

niaBOAHI TEXHOMOCrIT ¢ 2020 Bun.10, 3-12
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It is necessary to find Y = X p+emodel pa- ~
rameter estimates such that the constraints (18) We estimate the vector B so that the condi-
to be satisfied. To do this, it is necessary to . = e .
minimize the expression: tlon (RB—r) =0 be satisfied. To do this, select

B in such a way as to minimize L under con-

L=(Y - XB) BB(Y —XB)+(RB—r)" 21 dition RB = .
where 2 — is a vector column of g Lagrange The condition min L will be
multipliers.

] ) o dL = 0= -2XBBY +2(X"BBX)B- 5,
L=(Y~XB)"BB(Y ~ XB)+(RB~1)" = 2R™A.=0
YTBBY —Y"BBXB-BTXBBY +BTXBBXB+  From (20), (21), (22) we obtain:
(RB—r)" =YTBBY —2Y"BBX B+ X BBXB+
(RB—r)" 21

since YTI§I§X[:S - the number transposed to where K = XBBX .

B XTBBY , the second and third additions co- Multiply on the left on R

R =K(B-B) (23)

incide. ~ ~
Since RK'R'A =RK*K(B—B)=RK"'KB -
= R = = —_—— =~ RKJrKﬁ

dL =—2Y"BBXdB+dB" X "BBXp+ (24)
:T T55 = T =

p*X BBXdB+2AR dp Solve (24) pertaining tox, using the pseu-

dorandom matrix, we have:
ATvTEEY AT _ ATvTBRVAR - _

From (19) we have: Substitute the resulting expression for A

R (25) into (23):
2(-XBBY +(X"BBX)B+R"A) =0
RT(RK*R")"(RK*KB—RK*Kp) =
Let us denoteL =(Y —XB)" BB(Y — Xp).

Then the condition of minimization will be KB-B)
(XTBBX)p = X"BBY (20) Solve for (B —P):
Then (ﬁ_B)fK+RT(RK+RT)+(RK+K§—(26)
RK*Kp)

B=(X"BBX)*XTBBY (21)
Using 4 Lagrange multipliers, let us con- Smcf K KA: PlA_ orthoprojector [20] and
sider RK'KB=RPB=Rp=r, then

L=LC+2(RB—r)"2

MiABOAHI TEXHONOCrIT ¢ 2020 Bun.10, 3-12 9
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B=p—K'R"(RK'R")" (RK'Kp)+
K'R"(RK*R")'r=p—
K*R"(RK*R")"(RB) + K*R" (RK*R")"r

(27)

The second supplement is independent of
B, therefore D(K*R"T(RK*R")"r)=0.
Besides, it is known that [20]

D) =K* (28)

Applying (28) and (27) we get

D(B) = K" —K*R"(RK*R")*RD(p)
(K*RT(RK*RT)*R)" =K* —K*R" (29)
(RK*R")*RK*R" (RK*R")"RK*

Using the Moore-Penrose conditions (12) -
(15), we have:

K*RT(RK*R")"(RK*R")(RK*RT)*RK" =
K*R"(RK*R")"RK*

So
D) =D(B)-K'R" (RK*R")"RK*
D(B) = K* —K*R" (RK*R")*RK*

In addition

e’ D% =(Y - XB) DY - XB) =

(YT —BTXT)D(Y - XB) =YD +

B'X D XB-Y D XB-P XD =YD +
2B"X'DY +f' X DIXB=YD +

BT (XTDXB—2XTDY):;

e’ Dle=Y"D +3" (X" DXB-
2XTDH(XB+e)) =Y DY —BTKp.

Since (Y -Y,), ([:3—[30) are values with

zero mathematical expectations, then the
residual sum of squares in the presence of

10

additional conditions for the model parame-
ters have the form:

He =02 (EW e+ (B—B) (X "W X)(B-P)
Where
(XB-Y)=e
M(I5|R):n—t+g ,
He=H, - H,

where H, is the residual sum of squares in the

absence of a relation between the parameters
and is equal.
We can prove that

Hy
Hy

(r—RB)" (RK'R")"(r—Rp)
2 (r=RB)" (R(X™W™X)"R")*(r —Rp)

Indeed, according to (25), (26)

K(B—B)=R(RK'R")' (r ~ Rp)
(B—P)" = (r—RB)" (RK*R")*RK*

He=(B-B) KB-B)=(r" ~p'R")
(RK*R")"RK*RT(RK*R")*(r —Rp) =
(r" =B'RT)(RK*RT)"(r —RB)

Hence we will be able to evaluate the hy-
pothesis of the relationship between the pa-

—H
HO

0

- H
rameters B by the criterion —E& :%
0

where Hy distributed as —2— Font-
o n-t %

CONCLUSIONS FROM THIS STUDY
AND PROSPECTS FOR FURTHER EX-
PLORATION IN THIS AREA

The complexity of real economic processes
requires the continuous improvement of exist-
ing mathematical tools to enable the construc-

niaBOAHI TEXHOMOCrIT ¢ 2020 Bun.10, 3-12
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tion of adequate mathematical models. It is
necessary to constantly search for new ap-
proaches in mathematical modeling, which
will allow expanding the possibilities of con-
structing models of real economic processes.
Known methods may have quite limited appli-
cations. Thus, a detailed method of estimating
the parameters of linear econometric models
may be unsuitable in some cases for its appli-
cation in modeling real economic processes.
The classical least-squares method gives stable
and effective evaluation only if the conditions
of the Gauss-Markov theorem are fulfilled,
whereas in most studies such conditions are
not fulfilled. Therefore, developments that al-
low the adaptation of existing mathematical
modeling approaches to a wider range of prob-
lems are important. In addition, the modern
dissemination of digital information necessi-
tates its automated processing. Machine learn-
ing technology to build mathematical models
is becoming more commonplace, and so ap-
proaches that can be used to solve common
problem classes are becoming more relevant.
The approach considered in this paper meets
these requirements. It extends the ability to
solve the problem of evaluating parameters of
linear econometric models for cases of a num-
ber of problematic issues that may arise in the
construction of models and can be convenient-
ly implemented in machine learning systems.
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MaTemMmaTHKa Ta CTAaTHCTHKA

OueHuBaHMe NapaMeTPOB IKOHOMETPUYECKHUX
MojieJieid ¢ JIUHeHHBIMU OTPAHUYEHUSAMH U
MaTpuieidl Ha0JI0AeHHii HEMOJIHOI0 PaHTa

Anna I'puwenro, Anexcanop Kymoeot,
Onez lllymosckuii

AnHoTauus. PaccMoTpeH moaxos oLeHUBaHUS
[IapaMeTPOB JIMHEHHBIX IKOHOMETPUYECKUX 3aBHU-
CHUMOCTEH IUIsl CiIydyasl COBMELICHUS psiia 0COOBIX
YCJIOBUH, BOSHUKAIOLINX B MPOLIECCE MOAEIHPOBa-
HUS. OTH YCIIOBHUSI KacaloTcsl HamOoJiee Ba)KHBIX
po0ieM, BOSHUKAIOIIMX Ha MPAKTUKE [P peau-
3aluM psAa KIAaCCOB MaTeMaTHYeCKUX MOJIENeH,
JUIS IOCTPOCHUST KOTOPBIX HCHOJB3YETCs MaTpula
OOBSCHSIOMIMX TEPEeMEHHBIX. B  OONbIIMHCTBE
CllyyaeB BEKTOPBI, U3 KOTOPBIX COCTaBIISIETCS MaT-
pHIIa, HIMEIOT TECHYIO KOPPEJSLUOHHYIO CBSI3b, UTO
MPUBOAUT K HEOOXOAMMOCTH BBIIIOJHSTH BBIYHC-
JICHUS C HCIIOJIb30BAHMEM MATPUIBl HEMOJHOI'0
panra. Takxke UMEIOT MECTO HAPYLICHUS YCIOBHS
teopembl ['aycca-MapkoBa. B mepeuenb ykazaH-
HBIX OCOOBIX YCIOBWH J00aBIsSETCS HAUYHAE J0-
IIOJIHUTEJIBHBIX OTPAaHUYEHUN HA IapameTpbl MO-
JCIIH. K n3BecTHBIM YKOHOMHUYECKHUM ITOCTAHOBKAM
3aJa4 JaHHOTO TUIIA OTHOCATCS IPOM3BOJACTBEHHAS
¢yskius Ko66a-/lyrnaca u monens Conoy. B pa-
00Te HEOOXOIMMOCTh HAJIO0KEHUS JOMOIHUTEIb-
HBIX OIpaHMYCHHUN Ha HapaMeTpbl MOAEIH Pacipo-
CTpaHeHO [uIa Oosiee MIMPOKOro crekTpa 3aaad. B
o0IIeM Bujie MPHUBEIACHO SKOHOMHYECKYIO IMOCTa-
HOBKY 33/1a4H C YKa3aHHBIMH OCOOE€HHOCTSIMHU.
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PaccMoTpeHBl M3BECTHBIE CIOCOOBI PEIICHUS
Takux 3amad. lIpennokeH aBTOPCKUM TOAXO,
YUUTHIBAIOIIMI BECh IEPEUCHb YKa3aHHBIX OCO-
oennocreil. [lonxox OCHOBBIBaeTCS Ha NpUMEHeE-
HUM IICEBIOOOPATHBIX MATPHUILl M HCIIOIb30BAHUU
CHHTYJISIDHOTO pa3ioxeHust mMarpuu. llpumenenue
TaKOro MaTeMaTH4YeCKOr0 HMHCTPYMEHTapHs I03-
BOJISIET TOBBICUTH KaueCTBO OLIEHKH MapaMeTpoB
MoOJIeJIeH TIPH HCIIOJIb30BAHUM JAHHBIX PEabHBIX
3KOHOMUYECKUX mnpoueccos. HaiineHo ananurnye-
CKO€ BBIpa)KEHHUE JIJIs1 BEKTOpA OLIEHOK NapaMeTpoB
JIMHEHHON 3KOHOMETPHYECKOH MOJEIN C y4ETOM
BCEX YyKa3aHHBIX OCOOCHHOCTEW. AHANIHM3 TMOIY-
YEHHOT'O BBIPA)KEHUS MO3BOJIMII ONPEAEIUTH yCIIO-
BHs, KOTOPBIM JOJDKHA YJOBJIETBOPATh MaTpHLA,
OTMCBHIBAIOIIAS JOIOJTHUTEIbHBIE OIPAaHUYCHUS Ha
napaMeTpbl Mojient. Takke MoJyueHO BhIpaKeHHE
AJI1 OLCHKH JUCIICPCUH BCKTOpa MapaMEeTpoOB JIU-
HEWUHON S5KOHOMETPUUYECKOU MOJEIH.

[lonmy4eHHble pe3yabTaThl MOTYT OBITH HCIIOJIb-
30BaHbl B CHCTEMaAX MAIIMHHOI'O O6y‘-ICHI/I$I npu
peanuzanMy 3agad I[OCTPOCHUS HKOHOMETpUYE-
CKUX 3aBHCHMOCTEH WJIM AUCKPUMUHAHTHBIX MO-
Jenei.

KuroueBble cJI0Ba: 5KOHOMETPHUUECKHE MOJIEe-
7, MaTpHULa HETOJIHOTO PaHra, MyJbTHKOIHHEap-
HHUCTh, ycnoBusi ['aycca-MapkoBa, mceBnooOpart-
Has MaTpulia.
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