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Abstract. Shell elements are used in many thin-
walled structures. Therefore, to study the dynamics
of propagation of wave processes in the fine shells
of S.P. Timoshenko type is an important aspect as
well as it is important to investigate a wave
processes of the impact, shock in elastic foundation
in which a striker is penetrating. Refined model of
S.P. Timoshenko makes it possible to consider the
shear and the inertia rotation of the transverse
section of the shell. Disturbances spread in the
shells of S.P. Timoshenko type with finite speed.
The method of the outcoming dynamics problems
to solve an infinite system of integral equations
Volterra of the second kind and the convergence of
this solution are well studied. Such approach has
been successfully used for cases of the
investigation of problems of the impact a hard
bodies and an elastic fine shells of the Kirchhoff—
Love type on elastic a half-space and a layer. In
this paper an attempt is made to solve the plane
and the axisymmetric problems of the impact of an
elastic fine cylindric and spheric shells of the S.P.
Timoshenko type on an elastic half-space using the
method of the outcoming dynamics problems to
solve an infinite system of integral equations
Volterra of the second kind. The discretization
using the Gregory methods for numerical
integration and Adams for solving the Cauchy
problem of the reduced infinite system of Volterra
equations of the second kind results in a poorly
defined system of linear algebraic equations: as the
size of reduction increases the determinant of such
a system to aim at infinity. This technique does not
allow to solve plane and axisymmetric problems of
dynamics for fine shells of the S.P. Timoshenko
type and elastic bodies. It is shown that this
approach is not acceptable for investigated in this
paper the plane and the axisymmetric problems.
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This shows the limitations of this approach and
leads to the feasibility of developing other
mathematical approaches and models. It should be
noted that to calibrate the computational process of
deformation in the elastoplastic formulation at the
elastic stage, it is convenient and expedient to use
the technique of the outcoming dynamics problems
to solve an infinite system of integral equations
Volterra of the second kind.

Keywords: impact, elastic, elastic-plastic, half-
space, axisymmetric problem, fine, spherical shell,
S.P. Timoshenko.

INTRODUCTION

The approach [2 — 6] for solving problems of
dynamics, developed in [7 — 9, 11], makes it
possible to determine the stress-strain state of
elastic half-space and a layer during
penetration of absolutely rigid bodies [2, 3, 8,
9, 11] and the stress-strain state of elastic
Kirchhoff-Love type fine shells and elastic
half-spaces and layers at their collision [4 — 7].
This led to the feasibility of developing other
mathematical approaches and models. In [10,
12 — 15], a new approach to solving the
problems of impact and nonstationary
interaction in the elastoplastic mathematical
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formulation [16 — 20] was developed. In non-
stationary problems, the action of the striker is
replaced by a distributed load in the contact
area, which changes according to a linear law
[21 — 23]. The contact area remains constant.
The developed elastoplastic formulation makes
it possible to solve impact problems when the
dynamic change in the boundary of the contact
area is considered and based on this the
movement of the striker as a solid body with a
change in the penetration speed is taken into
account.  Also, such an elastoplastic
formulation makes it possible to consider the
hardening of the material in the process of
nonstationary and impact interaction.

The solution of problems for elastic shells
[24 — 27], elastic half-space [28 — 30], elastic
layer [31], elastic rod [32, 33] were developed
using method of the influence functions [34].
In [24] the process of non-stationary
interaction of an elastic cylindrical shell with
an elastic half-space at the so-called
"supersonic” stage of interaction is studied. It
is characterized by an excess of the expansion
rate areas of contact interaction speed of
propagation tension-compression waves in
elastic half-space. The solution was developed
using influence functions corresponding
concentrated force or kinematic actions for an
elastic isotropic half-space which were found
and investigated in [34].

In this paper, we investigate the approach
[4 — 7] for solving the axisymmetric problem
of the impact of a spherical fine shell of the
S.P. Timoshenko type on an elastic half-space.

It is shown that the approach [2 — 5], after
the reduction of the infinite system of Volterra
integral equations of the second kind [6 — 8,
11] and discretization using the Gregory
methods for numerical integration and Adams
for solving the Cauchy problem, a poorly
defined system of linear algebraic equations is
obtained for which the determinant of the
matrix of coefficients increases indefinitely
with increasing size of reduction.

PROBLEM FORMULATION

A thin elastic cylindrical shell comes into
collision with the elastic half-space z>0 with

its lateral surface along the generatrix of the
cylinder at the moment of time t=0. We
associate with the shell, as can be seen in
Figure 1, a movable cylindrical coordinate
system r0z': 6 — the polar angle, which is
plotted from the positive direction of the oz
axis, the oy axis coincides with the cylinder
axis. Let us denote by up(t,0), wy(t,0),

p(t,0), q(t,0) the tangential and normal

displacements of the points of the middle
surface of the shell and the radial and
tangential components of the distributed
external load, which acts on the shell. We
associate a fixed Cartesian coordinate system
xyz with the half-space, so that the Oz axis is
directed deep into the medium, the Ox axis is
directed along the surface of the half-space,
and the Oy axis is parallel to the generatrix of
the cylinder. The shell thickness /4 is much less
than the radius R of the middle surface of the
shell (h/R<0,05).

1=

Fig. 1. Scheme of the system cylindrical
shell — half space

In case of axisymmetric problem, a thin
elastic spherical shell, moving perpendicular to
the surface of the elastic half-space z>0,
reaches this surface at time =0. We associate
with the shell, as shown in Fig. 2, a movable
spherical coordinate system r'¢'0, where ¢' —
is the longitude of the radius vector », 6 — is
the polar angle.

With the half-space we associate a fixed
cylindrical coordinate system roz , the Oz axis

is directed deep into the medium, ¢ — is the
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polar angle. Angle 6 is plotted from the
positive direction of the Oz axis.
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Fig. 2. Scheme of the system spherical
shell — half space

The cylindric or spheric shell penetrates
into the elastic medium at a speed
vy (t), (0<t<T), the initial penetration rate
is V,=V;(0), T — the time during which the
shell interacts with the half-space. The shell
thickness / is much less than the radius R of
the middle surface of the shell (h/R <0,05).

Let us denote by uy(t,0), wy(t,0), p(t,0),
q(t,0) the
displacements of the points of the middle
surface of the shell and the radial and
tangential components of the distributed
external load, which acts on the shell. With the

half-space we associate a fixed cylindrical
coordinate system roz , the Oz axis is directed

tangential and  normal

deep into the medium, ¢ — is the polar angle.

Angle 6 i1s plotted from the positive direction
of the Oz axis. The physical properties of the
half-space material are characterized by elastic
constants: volumetric expansion module K,
shear modulus p and density p. An elastic

medium with constants K, p, p will be
associated with a hypothetical acoustic
medium with the same constants K, p,
wherein p=0. Under C, C;, C; we mean

the speed of longitudinal and transverse waves
in an elastic half-space and the speed of sound
in the considered hypothetical acoustic
medium.
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Let's introduce dimensionless variables:

!

t’—% X —1 X ’—i u’—ﬁ

R |Ir] Rr R ' R’

uo ' Wo r Gij ’ VT
u =—, W, =—, G_,:—’ V. =—, (1)
°* R RV KT C

W. 1 q
W’ :_T __¥ , r__4 ,
"R HJ/RH i HVRH

M’ = M J_
PR l/R

B2 = —Szﬁ, a? = (1+ 4“)
cZ K c0 3K

2K e B
! o2 3K +4du

here u=|u, — is the vector of
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movement of points of the environment;

6,, 0., — honzero components of the stress

z° Xz

rz

tensor of the medium; M — is the shell running
mass; vy (t), wr (t) — speed and movement of

the shell as a solid. In what follows, we will
use only dimensionless quantities, so we omit
the dash. The elastic half-space and the spheric
shell are in a state of axisymmetric
deformation.

Differential equations (of the S.P.
Timoshenko type) describing the dynamics of
cylindrical (2) and spherical (3) shells and
considering the shear and inertia of rotation of
the transverse section, due to (1), take the
following form [35, pp. 297, 307]:
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here @ — angle of rotation of the normal

section to the middle surface, blz — coefficient

that considers the distribution of tangential
forces in the transverse section of the
cylindrical shell, k; — shear ratio of the

spherical shell, D — cylindrical stiffness,
Vo, Eg,p, — Poisson's ratio, Young's modulus
and density of the shell material, p u ¢ —

6

respectively, the radial and tangential
components of the distributed load acting on
the shell, R — is the shell radius.

The motion of an elastic medium is
described by scalar potential ¢ and non-zero
component of vector potential v, which

satisfy the wave equations [2 — 5]:
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Physical quantities are expressed in terms
of wave potentials as follows [6 — 9]:
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If the shear modulus p is set equal to zero
u=0, then the equations of motion of the

elastic medium will be the equations of
acoustics.

Let us consider the initial stage of the
process of impact of elastic shells on the
surface of an elastic half-space [4 — 7], when
no plastic deformations occur and the depth of
the shell penetration into the medium is small.

The problem of interaction of elastic shells
with an elastic half-space is solved in a linear
formulation, therefore, we linearize the
boundary conditions [2, 3, 8, 9, 11]: we
transfer the boundary conditions from the
perturbed surface to the undisturbed surface of
the bodies that are deformed. We assume that
there is no friction between the elastic half-
space and the penetrating body, or the slippage
condition is valid.

As can be seen from Fig. 1, the projections

of the functions Uy, Wy, p and ¢ on the

and oz axes will be equal:

pr,.wW, (t,0) = w,(t,0)cos0,
pr,.u,(t,0) =u,(t,0)sin6,
pr,. p(t,0) = p(t,0)cosH,
pr,.q(t,0) = q(t,0)sin6,
pr.w, (t,0) =—w,(t,0)sin0,
pr.u,(t,0) =u,(t,0)coso,
pr.p(t,0) =—p(t,0)sin0,
pr.q(t,0) =q(t,0)cos6.

Then, in the coordinate system, the

zor

displacements u,, U, and stresses o, and

r

y24

o, at the surface points of the contact area

ZX
rz

will be written as:

X X
u, {t, rH,OJzWT (t)—f (HFHJ_WO(LG)COSG_ 6)
—U,(t,0)sin6,
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u, (t, x,0) =—w, (t,0)sin 6 +u,(t,0)coso,

u, (t,r,0) =—w,(t,0)sin6 +u,(t,0)cos6,

X
o, |t ,

c,(t,r,0)=—p(t,0)sin0 +q(t,0) cosO,

X .
t,| 11,0 |sin6,
r
X
t,| 11,0 [cosH,
r

where W, (t) — displacement of the shell as a
rigid body, the function f{) describes the shell

profile, 20" as can be seen from Figures 1 and
2, the size of the shell sector in contact with
the half-space. In the case of the cylindrical
and the spherical shells:

X

()

The kinematic condition that determines the

, OJ =—p(t,0)cos6—q(t,0)sin0,

0/<0",

X
p(t! 9) =-6, (t’
r

,Ojcose—c

Xz
rz

0l<0",

X2

,Ojsin9+c

q(t.0) = o, [t, f

rz

XZ
r.2

: Xy .
half-size of the contact area | ,[(t) is written

as follows:

X X
wto-t[ [ o]
X)X
0, if <[, (),
r r
—U,(t,0)sin6 =
o I X
€<0, if > 1),
r r

We assume that the contact area is simply
connected region, and this statement is
equivalent to the fact that the stresses normal
to the contact area are compressive:

X *
6, <0, |r| < : ().

Based on (5), the boundary conditions in
the absence of friction in the contact zone can
be formulated as follows:
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X
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The initial conditions for potentials and —
are zero:

_ oy

99
= — = 0’ \V| =
o t=0 at

o, A =0. (10)

t=0

For the problem of impact of an elastic
shell on an elastic half-space, the velocity and
displacement of the impacting body are found
from the equation of motion by integrating it.

The equation of motion of a shell of mass
M for the problem of impact with an initial
velocity V, has the form:

d'w (1) _
M =5 =—P(t) (11)
v @), =Vo, W ()], =0, (12)
P(t)=—2| * s [tPLolall a3
e !GZZ el ri (13)

The condition for the absence of
disturbances ahead of the front of longitudinal
waves and the condition for damping of
disturbances at infinity are valid.

(p|p1>0(t+Cq - 0’ \Il|pl>(1t+Cu - 0’ (14)
(P|p1~>oo - 0’ \|j|pl~>oo - O’ (15)
2
where p, =|"_||+2°, C, =const.
r
SOLUTION ALGORITHM

Since the impact process is short-term, the
perturbation region at each moment of time ¢ is
finite. Restricting ourselves to a finite interval

of interaction time (0<t<T), it is possible to

select a region of a half-space, which by the
time moment 7 covers the entire zone of
disturbances. From this point of view, for
times (0<t<T), the elastic half-space can be

replaced by an elastic half-strip (|X| <l; z> O)

in case of plane problem and half-cylinder
(r<l; z=0) in case of axisymmetric

problem, the boundaries of which do not reach
the perturbations by the time 7.

*

" |m.
r

| =oT +

Thus, for times (0<t<T), the considered

problem is reduced to a nonstationary problem
for a half-strip and a half-cylinder with mixed
boundary conditions at its end. To represent
the displacement vector as:

u=grade +roty, divy =0,
on the lateral surface of the half-strip and the

half-cylinder, we select, for example, the
conditions for sliding termination:

. y =0, (16)
r ‘X‘ . 2| ‘:‘ =
or
Ui, =0, | =0 (17)
r rr \X\ o
Consider the initial - boundary value

problem (2) or (3), (4), (9) — (12). Let us
represent the normal w,(t,0) and tangential

Uy(t,0) displacements of the points of the

middle surface of the shell and the radial
p(t,0) and tangential q(t,0) components of

the distributed external load acting on the shell
in the form of trigonometric Fourier series in
case of plane problem and in Legendre
polynomials and their derivatives in case of
axisymmetric problem.
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D(t,0)= ;@n(t) ;;?(J(gseg) . (22)

In the space of Laplace transformants with
parameter s, the transformants of functions
D, w,,u,,p,q will, due to (18) — (22),

have the form:

wEo-Suo ST e
RIOUES LA Aot N
OURITE! gy SCS
a°(5,0)= > a5 (6) Ff‘f”(”e) 26)
un-goal 20}

We apply to the system of equations (2) and
(3) the Laplace transform in the variable ¢ with
the parameter s and substitute their equalities
(23) — (27). Equating the coefficients at the
same C€0S(NO) and sin(nO) in case of plane

problem and P,(cos0) and P!(cos6) in case

of axisymmetric problem we obtain the
relations connecting the components of the

expansion into  series of  functions
@, wy, uy ,p-and g-.
B Py (5)
2.2
MoS™ +8
Wo(s)=| | , (28)
Po (S) |

lv2s2+2/(1-v,)
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Then applying the inverse Laplace
transform to (28) — (41), by the theorem on the

convolution of the originals of two functions,
we have:

+

x(n(n +1)-1+v,

B;/;go j P (1) %

]/no(a4)1/2 (t—1) |de
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where H(x) — Heaviside function,

r,=(r’ +o%)"" cos(¢/2),
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r=—((A+B)/2+A,/3), 6=3(A-B)/2,
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12" =B, | vior +75(2n* +8,+2,)0 |,

R =PBs[ movali + (5 +mo)N* +15a, +voaq)r +

+n?(n? +a3)+a2a3],

13 =B, | miveo, +((v; +m)n’ +nia, +vZas)o |,
7 =—Ban[ (1+a)(ver +n")+ 3,3, |,

13 =—Bsn(1+a,)v50, 1y =-B,n(1+a,)v50,

Rt =—Bun[ (1+a,)(vr +n°)+3, |,

s n(n+1 1
L

vy, 1-v,

+75(N(N+1) —1+vy+Re))r+

+ n(n+21)_ 1 (n(n+1D) -1+v,+Ry),
1-vg  1-v,

s n(n+1 1
llf“=n§v§01+(n§( (n+1) J+

1—v§ 1-v,

+7;(N(N+1)=1+v, +Ry))o,
o= M(n(n +1) =1+ v, + Re + 1),
1-v,
, N(n+1)
0 1-v,

oL 20+ vk, ),
2(L+vo)Dk, ([ 1-v,

x(N(N+1) =1+ vy + Ry + i) =Ry ),

|30 =2 ! + ! c
20 1-vy 204 vpk, )

1) 2
RSP — 1202r 4| 12 n(n+ N "
2 =MoYol (no (2(1+v0)k5 1—v,

Isph _
12 =

G,

+75(N(N+1) =1+ vy +Re))r +

n(n+1) 2
+ + nin+1)-1+v,+R;)—
[2(1+v0)ks 1—v0j(( )1+ Yo+ Re)
_n(n+1)Rg

2(1+ vk,

1) 2
159 — 12v26. 4| 12 n(n+ 4 "
2 =MNoYo0: T| Mo 2L+ vk,  1-v,

+75(N(N+1)=1+v, +Ry))o,
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R :%(—n(n+1)+1 1 +y§rj,

Vo

R R
13 =y R0, RE =-"2n(n+), 12 =0,

6 B
A’(s)znéyg{ 5 s*+4 _A‘; s?+2 _gb }
b
A, B,
Ar:nzy‘{ L+4) = (r+2| = ||,
ofol |l g™ _ B,
6
A, :ngyg{ 6 c,+4 —A,;a 0}.
[3 (a )1/2 N t
Wo,o (1) = o /0 J-po(T)X
v, 0
1/‘10(3-4)1/2

(t- ‘C)J dr,

xSin
[ 1/1(0*\}(1_\’0)/2

Wy o () = j P, (0DQy (N, t—)dr+
+jqn (0Q, (n,t—7)dr, (36)
Up o (1) = j p,(DQu(Nt—t)dt+  (37)
+j 0, (1Qy (Nt —T)dr,
@, (1) =j P, (DQy(n,t—t)dr +

t —_—
+[0,(0)Qu(n,t—1)dr, (n=1,%0)
0
where

cyl
ij
sph

Q~ij (n:t) = 4[(&

R; .
+£8i ij jch(rot) s1n(00t)]/(éf +6i2)+

R
24, (0, s7) (H(s7)sh(syt) + H(=s{)sin(syt) )
+

(5,A'(s))
O, =LA, —G,A,, 3, =C,A, +IA,.

cyl
ij

wonll+9
Rijp

]Sh(l"ot) cos(o,t) +

cyl

ij

sph
I;

-0

r

We apply to the system of equations (2) and

1"
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(3) the Laplace transform in the variable ¢ (s is
the transformation parameter) and the Fourier
method of separation of variables, considering
the evenness in x of the potential ¢ and the

oddness of the potential vy, and require the

satisfaction of condition (14) — (15). Then [2 —
6], in the space of Laplace transformants, we
obtain the following representations for wave
potentials [7 -9, 11]:

@LLS’ )r( ,Z]=§,A1(S)x

XeXP| —Z,[— + A,
(0

X o0
\VL[S, i ,z):ZBn(s)x
n=0

SZ
xexp| -z B—2+xﬁ

where A, — the eigenvalues of the problem,

COSA, X
‘]0 (A‘nr) ’

(38)

sin, X
J, (0|

which are determined from conditions (16)
considering (5) in case of plane problem equal
A, =nm/l, and in case of axisymmetric

problem are the roots of the equality:

3 (A D=0, (n=0,00).

In (38) A/(s) and B,(S) are determined
from the boundary conditions. It follows from

representations (38) and relations (5) that the
sought-for functions on the surface of a half-
space are represented as series in the system of
eigenfunctions of the corresponding problems.

{1/}

COS A, X
Jo, 0|

j S0, 0

X * sini. X
Ul t, u, . (t "L
15 J 24O )
X 0 COSA. X
t 0= t n
Gzz ) r b J ;Gzn() J (7\, r)7
Sl Gl [0 |= . (t) hoX J, (A D).
r ( j nZ:]; zrn J ()\l )

12

Just as in [2 — 6], the dependence between
the harmonics of the vertical component of the
velocity and normal stresses on the surface of
the half-space is determined [7 — 9, 11]:

o, (1) =—a [vn O+ [V (F (t- r)dr} (39)
where
F (t) =—a), J,(ak, t)+ 20BN {Bzxﬁtz(J‘O(axnt) —~

=3, (BA,) — 3, (0, ) + ,(BA, 1) + B, tx
x(bJ, (o, t) — I, (BA 1) + (2 —b?) T (oA, 1) —

- ‘]_0 (B}\‘nt)} 5

where J,(t), J,(t) — Bessel functions of the

first kind of zero and first order, respectively,
and the function J(t) is defined as follows:

t
Jy(t) = [ J5(n)d.
0
Further, we will satisfy the mixed boundary
conditions (9). From (9), (39) we obtain the

following representation for the vertical
component of the velocity on the surface of the
e cosk X X

half-space:
Z =H X
J oA, 1) r

{V (t) — Wi, (t,8)cos O —u, (t, 9)sm6} (40)

» [[cos:
—H[|X| I C08 A X jvn(r)Fn(t—r)dr.

r r* an—; ‘]O(;\‘nr) 0

Substituting (23) and (24) into (40) with

*

|
r

*

allowance for arising from

X .
=sino,
r

geometric considerations in the zone of the
contact region, and representing both parts of
COSA, X
‘]O(}\’nr)

obtain an infinite system of Volterra integral

equations (ISVIE) of the second kind
regarding to unknown harmonics velocity on

the surface of the half-space (n= O,_oo) :

(40) in the form of series in
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V, (t)+ZaEm]( -
+2[a[§’]( ]w (t)+a[

><j.Vm (vF,(t—1)dt =C£;] {

ij (1)F, (t—t)dr+

I(|¢

* j l']Om (t)] x
r

X*
% VT (t)a
r

where

ol (x° )_—Icosk Xcos A, Xdx,

n x

o (x’ )__.H] x*D,,, (X)cos A, xdx,

a®(x" )_—J'xB (X)cos A, xdx,

|
Cl(x*)zi cosA xdx, N?=[cos®r xdx,
n N2 n n n
n o 0

Dlm (x) =cos(mm/2)T,, (X) +sin(mn/2)U(X),
B, (X) = sin(mn /2)T (X)—cos(mz/2)U, . (X),

a®(r* )——jra (A1), (A, r)dr,

it )_—jr«h («/1— 2 )Jo(xnr)dr,

a®(r )_%jrz»\/l—r2 % P (\ﬂ— r’ )Jo(xnr)dr,

n o
|

=Ir(J0(xnr))2dr

0

1 r
2) f* 2
C:n (r ) an _([r‘]OO\’nr)dra Kn

here T (X) and U_(X) — Chebyshev
polynomials of the first and second kind.

The functions W, (t), U, (t) and ®_(t) are
determined from relations (32) — (35), but they
involve unknown functions p,(t) and q,(t).
Let us deal with their exclusion, for this we
use conditions (7), (8), which can be rewritten
using (39) in the form:
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Z P, (1) PC?CS BO)H — (0" —|6])cos 0 x
Z Cffi}“i?ff [Vn <t>+i Vo (OF, (t—r)dr],
gqn (t) P;i(zir;ee) =aH(0" —|0))sin 6 x

Using the orthogonality of the trigonometri-
cal functions and the polynomials and the
associated Legendre polynomials, we obtain
the relations establishing the relationship
between the harmonics of the series
expansions of the functions p, g and V-

P, (1) = i vgij(e*)[vm O+ jvmu) Fo(t= r)dr],
a, (1) = Zv[ i (9*)(vm (t) +]vm (DF,( —r)drj,

where
o
Y507 = il cochos nd cos(X,, sin 6)do,
o

Ym@) =3 j sin 0sin N cos(k,, sin 0)do,
no

= J.cosz nodo, N? = jsinz nodo.

0

.
YO") = %‘2 [ cos0sin 0P, (cos0)J, (i, sin 0)do,
n 0
0"
Y90 = Igz Ism OP; (cos0)J, (A, sin6)do,
n o
.
Y9(0%) = 2 [ cos0sin 0P, (cos0) 3, (A, sin 0)do,
K24
0"
Yo (®") = rgz Ism 6P (cos0)J, (A, sin6)do,
n o

n

K? = [sin6(P,(cos6))" do
0
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=]Esine(Pn1(cos9))2 do
0

Thus, the final form of the resolving ISVIE
of the second kind will be as follows:
) =)
(4)

V, (t) + Z

jv (1)F, (t—1)dt+

:: vaEmJ(G @)V (1) +

k*o

(OF (- i)délel(mt T)dt+

AN

2.
']

(2)

o0

DI

m:

H] (0" (0) (Vi(1) +

(5)

+JEVk (©)F (t- %)dilez(m»t —T)dr+

(3)

(5)( )

0

Dy

m:

| vEmj 0" () (Vi (D) +

k=0 o

+ .[Vk ©F (t- i)dij Q,(Mm,t—t)dt+

ot (X

o (r ) IyEmJ(O () (Ve (1) +

k=0 o

+Z

+ J V, (&F(x —@déjsz(m,t ~7)dr=

<

To solve the problem, when the shell
penetration velocity V;(t) is a predetermined

(41)

]v (t), (n=0,).

function, it is sufficient to numerically
implement equations (41).

The expression for the reaction force of the
elastic half-space (13), using (39), can be
rewritten as:

,OJd

“lo
;

P(t) = -2 j

0

1

nr

X

c,, [t, ,

X

r

14

O+

ot

sini, X’
(o

The equation of motion of the shell (11)
with the initial conditions takes the form:

M %:—c{ J{VT(t)r*(t)+

1
o *
nr ()

> 1
*2201

jv (0)F, (t— r)dr}

nr'(t)

sinA, X

Iy (Ror

To solve the problem of impact with an
initial velocity V;, the system of equations

=1
25 )

jv (DF (t— r)dt}

(41) must be supplemented with the equation
of motion (42).

The contact area is determined considering
the rise of the medium from the condition:

X*

)

cos(narcsin x*)

15 e |
. J(T) (jll(nst -T)+

Ennj [arcsin[ X
.
o ][arcsm( )r( J(r)]@lz(n,t—t)]x

x{vm @+, (&)qu—a)da}dr—

t
8,jurt+8,, [ vy (tyde — f (
0

CoSA, X" ||t

Z? 3o (Rr”) !Vn(r)dr_

*2

— -

M

0)

m=0

oc._..-.

(43)
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sin(narcsin x*)

papreg
5 ;[ e
'

x[vm (0+ [Vo (©F, (c —@d&}dr -

i)
|

£<0, if ( [X>x(®)

r>r-(t)

here 8,={0, if i# J; 1, if =]} — Kronecker
symbol. Index j=1 corresponds to the case
when the body penetrates into the medium at a
speed varying according to a predetermined
law (setting 1); if the wvelocity of the
penetrating body is known only at the initial
moment of time t=0, and at subsequent
moments is determined from the equation of
motion (statement 2), then j=2. If we exclude
the fourth term in relation (43), then we obtain
a condition from which the boundary of the
contact region is determined without
considering the rise of the medium.

:_(: j(r)\]QZl(nﬁt -1+

(1)Q,,(n,t—1) |x

x| <X (t)
r<ri(t)

NUMERICAL SOLUTION

The size of reduction N of the ISVIE of the
second kind will be chosen from
considerations of practical convergence. In
case of plane problem

To smooth out the oscillations arising from
the summation of a finite number of terms of
the series, as well as Gibbs phenomena near
points of weak discontinuity, the averaging
operation was used, defined in [2 — 6], which,
in the case of a sum of a finite number of
terms of the trigonometric series, to
memberwise multiplication of the members of

the finite sum on o, — Lanczos multipliers
(8,9, 11].
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1, if n=0,
Gy sm(nn/N)1 if n-o,
nm/N

The integrals were calculated using the
method of mechanical quadratures, in particu-
lar, the symmetric Gregory quadrature formula
for equidistant nodes. The Cauchy problem for
the differential equation (52) was solved by the
Adams method (closed-type formulas) [2 — 6]
of order m, with a local truncation error

o(At™™) [7 — 9, 11]. As a result of

discretization, we obtain a system of linear
algebraic equations (SLAE). Calculations have
shown that with an increase in the reduction
size N, the determinant of the SLAE matrix
increases indefinitely. The SLAE is poorly
defined: as the reduction size N tends to
infinity, the value of the determinant of the
SLAE matrix also tends to infinity. This is due
to the fact that the kernels Q;(n,t), Q,,(n,t)

in (43), (44) have asymptotic exp(O(n)) in the
parameter 7, Q,,(n,t) and Q,,(n,t) in (46) and

(47) have asymptotic O( % )exp(O(n)) in the

parameter n. Methods of  Tikhonov
regularization and orthogonal polynomials do
not work to neutralize such an exponential
singularity. The approach [1 — 5] for solving
problems of dynamics makes it impossible to
study the impact of elastic cylindric and
spheric shells of the S.P. Timoshenko type and
elastic bodies on an elastic foundation [7 — 9,
11]. In addition, this approach makes it
possible to determine the stress-strain state
only on the surface of the medium into which
the striker penetrates.

CONCLUSIONS

As a result of an attempt to solve the plane
and the axisymmetric problems of the impact
of a cylindric and a spheric fine shells of the
S.P. Timoshenko type on the surface of an
elastic half-space, applying the method of
reduction of dynamic problems to infinite
systems of Voltaire's equations of the second
kind, the limitations of this technique were
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revealed. This technique does not allow
solving plane and axisymmetric [1] problems
of dynamics for refined shells of the S.P.
Timoshenko type and elastic bodies.

To solve [10, 12 — 15] the problems of
impact and nonstationary interaction [16 — 20],
the elastoplastic formulation [21 — 23] can be
used. It should be noted that to calibrate the
computational [2] process in the elastoplastic
formulation at the elastic stage, it is convenient
and expedient to use the technique [2 — 6] for
solving the problems of dynamics, developed
in[7-9, 11].
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OauH NoaXo[ K 3aja4aM yiapa 000104eK
Tuna C.I1. Tumomenko 06 ynpyroe
MOJIyIPOCTPAHCTBO

Braoucnae bozoanos

AHHOTaAIUS. Obonoyeunsle 3JIEMEHTBI
HCIONB3YIOTCA  BO  MHOTMX  TOHKOCTEHHBIX
KOHCTpyKuusAx. [loaToMy wu3yueHue NIHWHAMUKU
pacnpoCTpaHEeHHs] BOJIHOBBIX MPOLIECCOB B TOHKUX
obomoukax Tuma C.II. TwumomeHko sBIsSETCS
BOXHBIM  aCMEKTOM, TaKk k€ KaKk BakKHO
WCCIIEZIOBAaHUE BOJIHOBBIX IIPOLIECCOB yaapa B
yIOpyroM OCHOBAaHHH, B KOTOpPO€ IPOHHUKAET
yaapauk. YTtounenHass mozgenb C.II. Tumormienxo,
ONMCHIBAIOIIAs JWHAMUKY OOOJIOYEK, IT03BOJISET
Y4€CTbh CIIBHI' 1 MHEPIIMIO BPAILIEHUS MONEPEUHOrO
ceueHuss OOOJIOYKU. XOpOLIO M3Y4YEHbl METOA
CBEJICHUS PELIeHMs 3a/lad AMHAMUKH K PElIeHUIO
OECKOHEYHOW CHCTEMBbl MHTETPAIbHBIX YpaBHEHUI
Bonsreppa BTOpOro poma M CXOOUMOCTB 3TOTO
pemieHus. Takoil MOAXOZ YCHEUIHO HNPUMEHSIICS
JUIs  CIy4daeB MCCJENOBaHUs 3ajad o0 ymape
TBEPABIX TEJ M YNPYIHMX TOHKHX 000JOYEK THma
Kupxroda — JlsBa 06 ynpyrue momymnpocTpaHCTBO
u cioi. B mamHO# paborte pemraercs miockas u
OCecUMMET-pUYHasl 3aJadyd o0 yaape YIpyrux
TOHKHX  IWIMHApPUYECKOW U cdepuueckoit
obomouex THma C.II. Tumomenko o0 ympyroe
MOJYTIPOCTPAHCTBO  METOZOM  CBEICHHS  3a]ad
JUHAMUKH K PEHICHUI0 OECKOHEYHOH CHCTEMBI
UHTErpajibHbIX YypaBHeHUU Boisreppa BTOpOro
pona. B pesynbrare TOMBITKH pENIEHUS TaKUM
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MareMaTHKa Ta cTaTMCTMKA

METOZOM  TIOKa3aHO, YTO  TaKkOM  IOAXON
HEMpPHUEMJIEM Ul UCCIEAYEMBIX B JTaHHOW CTaTbe
TJIOCKOM u 0CECUMMETPUYHON 3ajad.
Jluckpernzanuss € HUCMOJB30BAaHHUEM  METO/OB
I'peropu U1 YHCICHHOTO WHTETPUPOBAHMUS U
Anamca ans pemenus 3anaun Komu 11 nostydes-
HOI OECKOHEUHOM cucTeMbl ypaBHeHHI Bonbreppa
BTOPOTO pOfAAa MPHUBOAWT K PELIEHUIO IUIOXO
OTpeIeICHHON CHUCTEMBI JIMHEMHBIX
anreOpandecKkux YpaBHEHWH: IIpU YBEJINYECHHUU
MOpAJKA PEeAYKIUN ONpPeNeNuTedb TaKOM CHCTEMBI
CcTpeMHuTbCsl K OeckoHeuHocTH. IlokazaHo, 4TO
JaHHAsi METOAMKA HE TIO3BOJISIET PeIlaTh INIOCKHUE U
OCECUMMETPHUYHBIE 3a/1aul AUHAMUKHU JJI1 TOHKHUX
o6onouek tuna C.I1. TumonieHko U ynpyrux tedi.
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DTO SBISETCSI OTPAaHMUYCHHOCTHIO TAKOTO IOIIXOJa
1 TIOKa3bIBaeT HEOOXOMUMOCTh pa3pabOTKH APYTUX
MaTeMaTHYeCKHUX IOIX0M0B M Moxeiei. Cremyer
OTMETHUTb, YTO JIJISl KATMOPOBKHU BBIYUCIUTEIHLHOTO
rnporecca B JUHAMUYECKON yIpPYromiacTHYeCKOl
IIOCTAaHOBKE HA yOPYyroM JTame Iporecca
nedopMupoBaHusl  yIOOHO U LenecooOpa3Ho
HCIIOJIb30BaTh TEXHUKY CBEIICHUS 3a/1a4 JUHAMUKU
K PEmIeHUI0 OECKOHEYHON CHCTEMBl HHTETPAITBHBIX
ypaBHeHU# BosbTeppa BTOpOro poza.

KawoueBple  ciaoBa:  ygmap, — ympyrocrb,
YIPYTOILIaCTHYHOCTb, MOy TIPOCTPAHCTBO,
OCeCMMMETpUYHAs 3aj/lada, TOHKas cdeprudeckas
o6omouka, C.I1. TuMOIIIEHKO.
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