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Abstract. The design of composite and rein-
forced or armed materials is a requirement of the
modern level of production and life. Many methods
of calculation and design of such materials are suc-
cessfully used. In this article, for the design of com-
posite and reinforced materials, a technique for
solving dynamic contact problems in more precise
an elastic-plastic mathematical formulation is used.
To consider the physical nonlinearity of the defor-
mation process, the method of successive approxi-
mations is used, which makes it possible to reduce
the nonlinear problem to a solution of the sequences
of linear problems. In contrast to the traditional
plane strain, when one normal stress is equal to a
certain constant value, for a more accurate descrip-
tion of the deformation of the sample, taking into
account the possible increase in longitudinal elon-
gation, we present this normal stress as a function
that depends on the parameters that describe the
bending of a prismatic body that is in a plain strain
state. The problem of a plane strain state of a beam
made from the composite reinforced double-glazed
material is being solved. The reinforced or armed
material consists of two layers: the upper (first) thin
layer of solid steel and the lower (second) main
layer of glass. Glass is a non-crystalline, often trans-
parent amorphous solid, that has widespread practi-
cal and technological use in the modern industry.
The most familiar types of manufactured glass are
"silicate glasses" based on the chemical compound
silica (silicon dioxide, or quartz). Glass has high
strength and is not affected by the processes of ag-
ing of the material, corrosion, and creep. In addition,
this material is cheap and widely available. Glass
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can be strengthened, for example, in a melt quench-
ing process. If the cooling is fast enough (relative to
the characteristic crystallization time), then crystal-
lization is prevented, and instead the disordered
atomic configuration of the supercooled liquid is
frozen into a solid state. This increases the strength
properties of the glass. The reinforced composite
beam is rigidly linked to an absolutely solid base
and on which an absolutely solid impactor acts from
above in the centre on a small area of initial contact.

Keywords: Plane, strain, impact, composite ma-
terial, armed material, reinforced material, elastic-
plastic, deformation.

INTRODUCTION

Glass is a very strong and very fragile mate-
rial at the same time. The fragility of glass is
due to the fact that there are many microcracks
on the surface, and when a load is applied to the
glass surface, these microcracks begin to grow
and lead to the destruction of glass products. If
we glue or immobilize the tops of microcracks
on the surface, we will get a strong reinforced
armed material that will be lighter, stronger and
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not subject to degradation of material properties
such as aging, corrosion and creep. The upper
reinforcing layer of metal or steel can be ap-
plied to the glass surface so that metal or steel
atoms penetrate deeply, fill microcracks and
bind their tops. The top layer can be quite thin.
The adhesion between the layers is considered
perfectly rigid. The issue of practical provision
of such coupling is an important component of
technological implementation. In the E.O. Pa-
ton Institute of Electric Welding of the National
Academy of Sciences of Ukraine in the early
2000s, the technology of welding ceramic parts
was developed. A copper membrane was
clamped between two ceramic parts. A power-
ful electric impulse was applied to the mem-
brane, as a result of which the copper mem-
brane instantly evaporated and the copper at-
oms penetrated deep into the structural pores,
capillaries and microcracks of the material. Due
to this, the welding of ceramic parts was carried
out with sufficient strength. In our case, layers
of glass and steel can be rigidly connected using
this technology. Steel is a polycrystalline mate-
rial with many microcracks between the grains
among the carbides. Therefore, atoms of cop-
per, or other material according to the technol-
ogy, penetrate into the microcracks of glass and
steel and immobilize the tops of the mi-
crocracks of the materials.

Glass is also convenient in that it can be
poured into the frame of the reinforcement and
thus can be further strengthened. As reinforcing
elements, metal wire, polysilicate, polymer,
polycarbon compounds, which can have a fairly
small thickness, can be used. The thickness of
such reinforcing materials can be equal to the
thickness of several atomic layers, such as gra-
phene.

In [1 — 5], a new approach to solving the
problems of impact and nonstationary interac-
tion in the elastoplastic mathematical formula-
tion was developed. In this papers like in non-
stationary problems [1 — 5], the action of the
striker is replaced by a distributed load in the
contact area, which changes according to a lin-
ear law. The contact area remains constant. The
developed elastoplastic formulation makes it
possible to solve impact problems when the dy-
namic change in the boundary of the contact

area is considered and based on this the move-
ment of the striker as a solid body with a change
in the penetration speed is taken into account.
Also, such an elastoplastic formulation makes it
possible to consider the hardening of the mate-
rial in the process of nonstationary and impact
interaction.

The solution of problems for composite cy-
lindrical shells [6], elastic half-space [7], elastic
layer [8], elastic rod [9, 10] were developed us-
ing method of the influence functions [11].

In contrast from the work [12], in this paper,
we investigate the impact process of hard body
with plane area of its surface on the top of the
composite beam which consists first thin metal
layer and second main glass layer. The fields of
plastic deformations and, stresses were deter-
mined relative to the size of the area of initial
contact.

PROBLEM FORMULATION

Deformations and their increments [13, 14],
Odquist parameter, effective and principal
stresses are obtained from the numerical solu-
tion of the dynamic elastic-plastic interaction
problem of infinite composite beam
{~-L/2<x<L/2; 0<y<B;—w0<z<oo} in
the plane of its cross section in the form of rec-
tangle. It is assumed that the stress-strain state
in each cross section of the cylinder is the same,
close to the plane deformation, and therefore it
1s necessary to solve the equation for only one
section in the form of a rectangle =LxB
with  two layers:  first steel layer
{-L/2<x<L/2 -0 < 7 < oo
B-h<y<B} and second glass layer
{-L/2<x<L/2;0fy<B-h;—0<z<oo}
contacts absolute hard half-space {y < 0}. We
assume that the contact between the lower sur-
face of the first metal layer and the upper sur-
face of the second glass layer is ideally rigid.

From above on a body the absolutely rigid

drummer contacting along a segment {|X| <A
y = B}. Its action is replaced by an even dis-

tributed stress —P in the contact region, which
changes over time as a linear function

P = pp1 + Poot . Given the symmetry of the de-
formation process relative to the line x=0,
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only the right part of the cross section is consid-
ered below (Fig. 1). The calculations use known
methods for studying the quasi-static elastic-
plastic [14, 15 — 17] model, considering the
non-stationarity of the load and using numerical
integration implemented in the calculation of
the dynamic elastic model [1 — 5].

y
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Fig. 1. Geometric scheme of the problem

The equations of the plane dynamic theory
are considered, for which the components of the
displacement vector u = (uy,uy) are related to

the components of the strain tensor by Cauchy
relations:
ou, au, 1(éu, ou,
gXX gyy:_a ng:_ —+— .
OX oy 2\ oy oXx
The equations of motion of the medium have
the form:

2
00y N ao_xy —p 0°Uy

OX oy ot2
» (1
60Xy+60'yy_ 0°uy
x oy e

where p — material density.

The boundary and initial conditions of the
problem have the form:

x=0,0<y<B:iuy =0, gy =0,
x=L/2,0<y<Bioy =0, oy =0,
y=0,0<x<L/2:u,=0, o, =0, 2)
y=B, 0<x<A: oyy=-P, 0,y =0,

y=B, A<x<L/2: ny=0, ny=0.

ux|t=o =0, uy‘t=0 =0, uz|t=o =0, 3)
lyl_o =0, ”y‘t=0 =0, U}, =0.
The determinant relations of the mechanical
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model are based on the theory of non-isother-
mal plastic flow of the medium with hardening
under the condition of Huber-Mises fluidity.
The effects of creep and thermal expansion are
neglected. Then, considering the components of
the strain tensor by the sum of its elastic and
plastic components [18, 19], we obtain expres-
sion for them:

6‘ij = Eﬁ +€i}3, dé‘i}J = Sijdi,
4)

1
€ — ..

Eij —gsu + KO'+(0
here s;j = ojj —&j;o — stress tensor deviator;
djj — Kronecker symbol; E — modulus of elas-
ticity (Young's modulus); G — shear modulus;
Ki=(1-2v)/(BE) , K=3K; — volumetric

compression modulus, which binds in the ratio
& =Ko + ¢ volumetric expansion 3¢ (thermal

expansion ¢=0); o= (0w +0y +04)/3 —
mean stress; d A — some scalar function [15],
which is determined by the shape of the load

surface and we assume that this scalar function
is quadratic function of the stress deviator s;;

ij
[18, 19].

(0 (f =02-02(T)<0)
3d8ip
Oj

(f > 0—=inadmissible)

A= (f =0,df =0) , (5)

dgP =g((dgxpx —dg)?y)z +(dgxpx —dgzg)z +

+(dgp _ngF;)Z +6(dgxpy)2)%,
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The material is strengthened with a harden-
ing factor n* [1, 2, 26 — 28]:
K
o5 (1) = Uoz(To)[1+ ”))

€0
_002(To)
E )

(6)

where T — temperature; k¥ — Odquist parameter,
To=20°C , p* — hardening coefficient;
05 (T) — yield strength after hardening of the

material at temperature 7.
Rewrite (4) in expanded form:

Oxx —

dey =d

7+ Ka]+ (oy —o)d A,

[N)
(@)

2G
(7

O'yy O
=d +Ko |+ (oyy —0)d4,
de,, =d [Gzée 7+ Ka]+ (05, —0)d A,

deyy = d[ G ]+0'Xydﬂ

In contrast to the traditional plane defor-
mation, when A&, (X, y) =const, for a refined

description of the deformation of the specimen,
taking into account the possible increase in lon-

gitudinal elongation A¢,, , we present in its
form [12, 13, 19]:

A&z (X, Y)=A592+AZXX+AZyy: (8)

where unknown Ay, and Ay, describe the

bending of the prismatic body (which simulates
the plane strain state in the solid mechanics) in

the Ozx and Ozy planes, respectively, and Ag?z

— the increments according to the detected de-
formation bending along the fibers x = y = 0.

SOLUTION ALGORITHM

Let the nonstationary interaction [1 — 3, 13,
14] occur in a time interval t € [0, t«] . Then for

6

every moment of time #:

— O\ —O
EXX—GXX—+ Ko, eyy y;G +Ko,
O ny
e = ZéG +Ko, &y = G
del di def dA
= T R 9
dt (7%= ) dt ' dt Vo dt ©)
p
deyy =(0 )d_,1
dt W dt’

For numerical integration over time, Grego-
ry's quadrature formula [20] of order my =3
with coefficients D, was used. After discretisa-
tion in time with nodes
t, =kAte[0,t«] (k=0,K) for each value k

we write down the corresponding node values
of deformation increments:

Agyy k = Blaxx,k + BZO_yy,k — Pxxs
Agyy,k = Bzo-xx’k + B.I.ny,k _ﬁyy1 (10)
Agz k =40k + Q2 (Gxx,k - ny.k)_

—b,,. Agyy k = B3oyy k _bxy1

2 2
B =12 af%{“é*z%mj’

a

B =M, B =i+D Ay,
2 o 3 G 024

;(K—L—DOA/lk)

Bux = by —ap (b, +Agy) oy,
Byy =Dy
B == +Agy;) ey,

1 1
bij °G o~ Fij .k l+5lj (K_E]Gk—l_

m
-2.Dy (Uij,k—n —0
n=1

—ay(b, +Asy) oy,

§0kn JMiccn (1 =%,Y,2)

UNDERWATER TECHNOLOGIES:
Industrial and Civil Engineering, Iss.12 (2022), 3-14



Mathematics and statistics

The solution of the system (10) gives expres-
sions for the components of the stress tensor at
each step:

Oyxxk = AA&yy i + A2A<9yy,|< + Yy s

Oyyk = PolAsyy ik + AAsyy i +Yyy,

Oz k == (Oxxk + ny,k)/al = B,

Oyyk = A3A5Xy’k +ny,

Yix = A+ Py (11)
Yyy = Pofyx + Afyy,

Yy = Asbyys Ag =1/Bs,

A =8y /(B - B3),

Ao =B, /(B -B).

Function ¥ =1/(2G)+ A1, which is charac-
terizing the yield condition, taking into account

(8), (9), (11) is:

1
— (f <0
G (<0
1 3A€ip
={— f =0,df =0), 12
V126" 20, ) U2
(f >0 —inadmissible)

2 2 2
Agip=%((A€fx_Ag)rf)y) +(A5xpx_Agzg) +
2 2\
+(A8§’y—A8£) +6(A8)f’y) :
Asfy = Aeyy —Asyy, Aefy =Asy, —As,,

Agfy = Aeyy —Aeyy, Aeh =Asy —Acy,,

1 1
A«S‘EX =EO'XX]|< +(K—£)O'k,

1 1

Aé‘gy =£ny,k +(K—2—)O'k,
1 1

Agzez =£O-ZZ,|( +(K—£]O'k,

1 Oyx k + 0o k + 0 k
Ag)e(y = EJX%k’ O-k - XX, }:'3y, 7, .
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Considering when calculating the value A},

found that its impact is so small that without re-
ducing the accuracy of calculations can be con-

sidered Aep =0.

To take into account [13, 14] the physical
nonlinearity contained in conditions (12), the
method of successive approximations is used,
which makes it possible to reduce a nonlinear
problem to a sequence of linear problems
[15-17]:

yWp+ P it o <-Q,
p (M = Jy ™, if —Q<ojs<Q,
v/(n)ﬂ, if o5 >Q,
os(T)
ois = o) — o (T), (13)

where Q — the value of the largest deviation of

i(ﬂ)
strengthened yield strength; n — is the approxi-
mation number

Unknown [20] Ay, Ayy and As?z in (8) are

determined from the conditions of equilibrium

the stress intensity o7’ in step n from the

of even with respect to x normal stresses 0; .

[[oux ypddy=M,. (o=1xy). 4
by

when M; =M, =M, =0; where M; — projec-
tion on the axis Oz of the main vector of contact
stresses, and M, , M, — corresponding pro-

jections of the main moment of the forces acting
on the resistance (no torsion, as noted). Given
the symmetry of the problem and

04, (X,¥) =0, (=X, Y) this equation in case of
p = x 1s satisfied automatically.
If we substitute (8) and (11) in (14), taking

into account the symmetry of the integration
domain with respect to x and the even of func-

tions Gy ks Oyy ks Dz » We have Axy=0. A

system of linear algebraic equations is obtained
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for the calculation of Ag2,, A Xy

AeyL g +Ax L,y =M, (p=1y), (15)

v, Haz(axx+0' ) b,,

prdxdy,

” prdXdy r,p=1Xx,Y).

The stresses and strains used above were de-
termined for each unit cell from the numerical

solution at each point in time ty = KAt.

NUMERICAL SOLUTION

The explicit scheme of the finite difference
method was used with a variable partitioning
step along the axes Ox (M elements) and Oy (N
elements). The step between the split points was
the smallest in the area of the layers contact and
at the boundaries of the computational domain.
Since the interaction process is fleeting, this did
not affect the accuracy in the first thin layer, ar-
eas near the boundaries, and the adequacy of the
contact interaction modelling.

The use of finite differences [21] with varia-
ble partition step for wave equations is justified
in [22], and the accuracy of calculations with an
error of no more than
o((Ax)2 +(Ay)2 + (At)z) where Ax, Ay and

2

At — increments of variables: spatial x and y
and time ¢. A low rate of change in the size of
the steps of the partition mesh was ensured. The
time step was constant.

The resolving system of linear algebraic
equations with a banded symmetric matrix was
solved by the Gauss method according to the
Cholesky scheme.

In [23], during experiments, compact sam-
ples were destroyed in 21 — 23 ms. The process
of destruction of compact specimens from a
material of size and with contact loading as in
[23] was modelled in a dynamic elastoplastic
formulation, considering the unloading of the
material and the growth of a crack according to
the local criterion of brittle fracture. The sam-
ples were destroyed in 23 ms. This confirms the
correctness and adequacy of the developed for-
mulation and model.

8

Figs. 2 — 29 show the results of calculations
of two layers specimens with a hardening factor

of the material 77* =0,05. The first high layer

has made from hard steel. The second main low
layer has made from quartz glass. Contact be-
tween two layers is an ideal. Calculations were
made at the following parameter values: tem-

perature T=50°C ; L=60mm ; B=10 mm ;
h=03mm ; At=321-10%5; pp; =8 MPa ;
Po2 =10 MPa; M =62 ;N =100. The smallest
splitting step was 0,005 mm, and the largest 2,6
mm  (AXpip, =0,005 mm; Ay, =0,01mm
(only the first layer); AXpax =2,6 mm ;
AYpax =0,65 mm).

Fig. 2 shows plots of the Odquist parameter
K in the cell of the first layer, which is located
in the centre of the specimen at a depth of 0.25
mm. Solid, dotted, and solid with a circle lines
correspond to cases where the size of the con-

tact zone was equal a=2A=a=03mm
a=ay=05mm and a=a3=0.7 mm, respec-
tively.

Figs. 3 —11, 12 -20, 21 — 29 show the fields
of the Odquist parameter K , normal stresses

Oy and oy t, =257-10° s

t,=3.82-10°s and t;=5.13-10"°
tively.

From Figs. 2 -5, 12 — 14 and 21 — 23 it can
be seen that if the smaller the contact zone then
the bigger the plastic deformations, however, at
the end of the process of non-stationary interac-
tion, they are of the same degree.

. i
!

0
3.21E-08

at times

3

S, respec-

1.64E-06 3.24E-06 4.84E-06 t

Fig. 2. Odquist parameter K ,
when a=a,, =1
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Figs. 3 — 29 show that the highest stresses
occur in the upper layer of the metal and the
process of accumulation of plastic deformations
is more intense there. Figs.6 — 8, 15 — 17, 24 —
26 show areas where the normal stresses oy, in

the lower layer are tensile.
In the case when the contact zone a=a,, at

the moment of time t=t; the area with tensile

stresses is located in the middle under the
boundary between the layers. This is due to the
fact that compressive stresses arise in the upper
layer quickly and the contact between the layers
is ideally rigid.

Areas where the normal stresses oy, in the

lower layer are tensile are visible from Figs.11,
20, 29.

Attimes t,, T3, when the contact zone is @, at
times U, T, , 15, when the contact zone is equal

d, and 4, areas with tensile stresses oy, in the

lower layer are located near its lower boundary.

This is due to the fact that the investigated
deformation process has a wave character and
the contact of the lower boundary of the lower
layer with an absolutely rigid base is ideally
rigid.

This also explains that at the moment of time
t; for all cases of the length of the contact zone,
the areas where the normal stresses oy, are ten-

sile are located near the lower boundary y=0.

CONCLUSIONS

The developed methodology of solving dy-
namic contact problems in an elastic-plastic dy-
namic mathematical formulation makes it pos-
sible to model the processes of impact, shock
and non-stationary contact interaction with the
elastic composite base more adequately. In this
work, the process of impact on a two-layer base,
consisting of an upper thin layer of metal and a
lower main layer of glass, is adequately mod-
elled and investigated. The fields of summary
plastic deformations and normal stresses arising
in the base are calculated depending on the size
of the area of an initial contact between the im-
pactor and the upper surface of the base. The
area under the stamp in the glass layer under the

12

metal layer is shown, where there are small ten-
sile normal stresses Oyy , which are most likely

due to the propagation of impact waves in the
base material. The results obtained make it pos-
sible to design new composite reinforced armed
materials. Such a two-layer reinforced compo-
site material can be used as a plate of a body
armor and a wide range of needs of modern in-
dustry.
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3agaua o miIockoM aepopMHPOBAHHOM €O-
CTOSIHMU JIBYXCJIOHHOIO TeJIa B JTUHAMUYECKOM
yupyromjiacruyeckoii nocranoske (Hacrts I)

Bnraoucnae bozoanos

AnHoranus. [IpoekTHpoBaHUE KOMIIO3UTHBIX U
APMUPOBAHHBIX MaTEpHAaIOB SBIsETCS TpeOOoBa-
HUEM COBPEMEHHOTO YpOBHS TPOM3BOACTBA MU
*u3HU. C yCIIeXOM HCTIONB3YIOTCSI MHOTHE METOIBI
pacyeToB M MPOEKTUPOBaHMS TAKHX MaTepHanos. B
JTAaHHOM cTaThe /U1 MPOEKTHPOBAHUE KOMIIO3UTHBIX
Y apMHPOBAaHHBIX MaTEPUAJIOB UCTIONB3YETCS METO-
JIMKa pEIICHUs TMHAMHUYECKUX KOHTAKTHBIX 33124 B
yOPYTOIUIACTUYECKOM  MaTeMaTH4Yeckod  IocTa-
HOBKE.

Jns ydera ¢u3NYeCcKOdl HEIMHEWHOCTH IPO-
necca aehOpMHUPOBAHUS HCIIONB3YETCsS METOA T10-
CJICJIOBATENIbHBIX MPHUOJIMKCHUH, TO3BOJISFOIINN
CBECTH HEIMHEWHYIO 33739y K PELICHUIO. ITOCIEN0-
BaTEJILHOCTH JIMHENHBIX 3a1ad. B orinnuume ot Tpa-
JUITMOHHOW TIIJIOCKOM jAedopmaiuy, Korjga OJHO
HOpPMAaJIbHOE HAIPSHKEHHE PaBHSIETCS HEKOTOPOMY
[IOCTOSTHHOMY 3HA4YE€HHIO, [UIsl YTOYHEHHOTO OMHca-
HUsl gedopmanuu o0pasna ¢ y4eToM BO3MOXKHOTO
YBEJIMYEHHUST TPOJIOIBHOTO Y/UIMHEHUS TNPHUBENEM
9TO HOpMaJIbHOE HaIlpsDKeHUE B Buze (PyHKLMH, 3a-
BHCALIEH OT MapaMeTPOB, KOTOPHIE OMHCHIBAIOT H3-
ru0 MPU3MAaTHYECKOTO Tesa, KOTOPOe HAXOAUTCS B
COCTOSIHMHM TUIOCKOH Jiepopmanuu.

Pemaercs 3agaua niaockoro epopMUpOBaHHOTO
COCTOSIHMSI KOMIIO3UTHOM OajIky CTEKJIoNaKeTa, Ko-
TOpasi )KECTKO CIIeTIeHa ¢ a0COIIOTHO TBEPBIM OC-
HOBaHMEM M Ha KOTOPYIO CBEPXY IO ILIEHTPY Ha He-
OOJBIION TUTOIMIAJKE HAYaIbHOTO KOHTAKTa JeH-
CTByeT a0COIIOTHO TBEP/IbIi yaapHUK. CTeKIIomakeT
COCTOUT M3 ABYX CJIOEB: BEPXHUH (TIEPBBIN) TOHKHUH
13 TBEPJOH CTaJIM U HUXKHUH (BTOPOIT) OCHOBHOM M3
CTeKJIa.

Crekno sBisieTcd OYEHb IPOYHBIM U OUYEHBb
XPYNKUM MaTepHajoM OZHOBPEMEHHO. XPYIKOCTh
cTekia 00yCITaBIMBaeTCs TEM, YTO Ha TOBEPXHOCTH
pacmoraraeTcsi MHOXKECTBO MHKPOTPEIIMH W TpH
NPWIOKEHUH HATPY3KH K MMOBEPXHOCTH CTEKNA 3TU
MUKpPOTPEIIMHBl HAauYMHAIOT PacTH W TPUBOIAT K
pa3pylIEHUIO CTEKIIIHHBIX U3JeIuil. ECiu cKkienThb

13
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WM 00C3IBYKUTH BEPIIUHBI MUKPOTPEIIUH HA TI0-
BEPXHOCTH, TO MOJIYYHM IPOYHBIN apMUPOBaHHBII
MaTepual, KOTOpbIil OyaeT Ooliee TerKuM, IPOIHBIM
U HE TOJBEPKEHHBIM IIpolieccaM Jerpagaruu
CBOICTB Marepuaja TaKhM, KaK IMPOIECCHl cTape-
HUS, KOPPO3HH U NOJI3y4eCcTH. BepxHuil apmMupyro-
Ui cIol MeTajga MOXKHO HAaHOCUTH Ha TMOBEPX-
HOCTbh CTEKJIa ITyTEeM HalbUICHUS TaK, YTOObI aTOMBI

14

MeTala CTajdl TIyOOKO MPOHMKAIYU, 3aIlONHSIIN
MHKPOTPEIIHHEI U CBS3BIBATHM WX BEpPITUHBL. Bepx-
HHIH CJIOM MOKET OBITh JOCTATOYHO TOHKHM.

KuroueBnie cioBa: [Tnockas nedopmanus, yaap,
KOMIIO3UTHBIC MaTepHajIbl, apMUPOBAHHBIC MaTEPH-
aJpl, OpOHUPOBAaHHBIC MaTepPHAIIBI, YIPYTOIIACTH-
yeckas, nedopmarusi.
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