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Abstract. The design of composite and rein-

forced or armed materials is a requirement of the 

modern level of production and life. Many methods 

of calculation and design of such materials are suc-

cessfully used. In this article, for the design of com-

posite and reinforced materials, a technique for 

solving dynamic contact problems in more precise 

an elastic-plastic mathematical formulation is used. 

To consider the physical nonlinearity of the defor-

mation process, the method of successive approxi-

mations is used, which makes it possible to reduce 

the nonlinear problem to a solution of the sequences 

of linear problems. In contrast to the traditional 

plane strain, when one normal stress is equal to a 

certain constant value, for a more accurate descrip-

tion of the deformation of the sample, taking into 

account the possible increase in longitudinal elon-

gation, we present this normal stress as a function 

that depends on the parameters that describe the 

bending of a prismatic body that is in a plain strain 

state. The problem of a plane strain state of a beam 

made from the composite reinforced double-glazed 

material is being solved. The reinforced or armed 

material consists of two layers: the upper (first) thin 

layer of solid steel and the lower (second) main 

layer of glass. Glass is a non-crystalline, often trans-

parent amorphous solid, that has widespread practi-

cal and technological use in the modern industry. 

The most familiar types of manufactured glass are 

"silicate glasses" based on the chemical compound 

silica (silicon dioxide, or quartz). Glass has high 

strength and is not affected by the processes of ag-

ing of the material, corrosion, and creep. In addition, 

this material is cheap and widely available. Glass  

 

 

can be strengthened, for example, in a melt quench-

ing process. If the cooling is fast enough (relative to 

the characteristic crystallization time), then crystal-

lization is prevented, and instead the disordered 

atomic configuration of the supercooled liquid is 

frozen into a solid state. This increases the strength 

properties of the glass. The reinforced composite 

beam is rigidly linked to an absolutely solid base 

and on which an absolutely solid impactor acts from 

above in the centre on a small area of initial contact. 

Keywords: Plane, strain, impact, composite ma-

terial, armed material, reinforced material, elastic-

plastic, deformation. 

 

INTRODUCTION 

 

Glass is a very strong and very fragile mate-

rial at the same time. The fragility of glass is 

due to the fact that there are many microcracks 

on the surface, and when a load is applied to the 

glass surface, these microcracks begin to grow 

and lead to the destruction of glass products. If 

we glue or immobilize the tops of microcracks 

on the surface, we will get a strong reinforced 

armed material that will be lighter, stronger and 
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not subject to degradation of material properties 

such as aging, corrosion and creep. The upper 

reinforcing layer of metal or steel can be ap-

plied to the glass surface so that metal or steel 

atoms penetrate deeply, fill microcracks and 

bind their tops. The top layer can be quite thin. 

The adhesion between the layers is considered 

perfectly rigid. The issue of practical provision 

of such coupling is an important component of 

technological implementation. In the E.O. Pa-

ton Institute of Electric Welding of the National 

Academy of Sciences of Ukraine in the early 

2000s, the technology of welding ceramic parts 

was developed. A copper membrane was 

clamped between two ceramic parts. A power-

ful electric impulse was applied to the mem-

brane, as a result of which the copper mem-

brane instantly evaporated and the copper at-

oms penetrated deep into the structural pores, 

capillaries and microcracks of the material. Due 

to this, the welding of ceramic parts was carried 

out with sufficient strength. In our case, layers 

of glass and steel can be rigidly connected using 

this technology. Steel is a polycrystalline mate-

rial with many microcracks between the grains 

among the carbides. Therefore, atoms of cop-

per, or other material according to the technol-

ogy, penetrate into the microcracks of glass and 

steel and immobilize the tops of the mi-

crocracks of the materials.  

Glass is also convenient in that it can be 

poured into the frame of the reinforcement and 

thus can be further strengthened. As reinforcing 

elements, metal wire, polysilicate, polymer, 

polycarbon compounds, which can have a fairly 

small thickness, can be used. The thickness of 

such reinforcing materials can be equal to the 

thickness of several atomic layers, such as gra-

phene. 

In [1 – 5], a new approach to solving the 

problems of impact and nonstationary interac-

tion in the elastoplastic mathematical formula-

tion was developed. In this papers like in non-

stationary problems [1 – 5], the action of the 

striker is replaced by a distributed load in the 

contact area, which changes according to a lin-

ear law. The contact area remains constant. The 

developed elastoplastic formulation makes it 

possible to solve impact problems when the dy-

namic change in the boundary of the contact 

area is considered and based on this the move-

ment of the striker as a solid body with a change 

in the penetration speed is taken into account. 

Also, such an elastoplastic formulation makes it 

possible to consider the hardening of the mate-

rial in the process of nonstationary and impact 

interaction.  

The solution of problems for composite cy-

lindrical shells [6], elastic half-space [7], elastic 

layer [8], elastic rod [9, 10] were developed us-

ing method of the influence functions [11]. 

In contrast from the work [12], in this paper, 

we investigate the impact process of hard body 

with plane area of its surface on the top of the 

composite beam which consists first thin metal 

layer and second main glass layer. The fields of 

plastic deformations and, stresses were deter-

mined relative to the size of the area of initial 

contact. 

 

PROBLEM FORMULATION 

 

Deformations and their increments [13, 14], 

Odquist parameter, effective and principal 

stresses are obtained from the numerical solu-

tion of the dynamic elastic-plastic interaction 

problem of infinite composite beam 

{ / 2 / 2;L x L     0 ; }y B z        in 

the plane of its cross section in the form of rec-

tangle. It is assumed that the stress-strain state 

in each cross section of the cylinder is the same, 

close to the plane deformation, and therefore it 

is necessary to solve the equation for only one 

section in the form of a rectangle L B    

with two layers: first steel layer 
{ / 2 / 2;L x L   ;z   

}B h y B     and second glass layer 

{ / 2 / 2;L x L   0 ; }y B h z        

contacts absolute hard half-space { 0}y  . We 

assume that the contact between the lower sur-

face of the first metal layer and the upper sur-

face of the second glass layer is ideally rigid. 

From above on a body the absolutely rigid 

drummer contacting along a segment { ;x A  

}y B . Its action is replaced by an even dis-

tributed stress P  in the contact region, which 

changes over time as a linear function 

01 02P p p t  . Given the symmetry of the de-

formation process relative to the line 0x   , 
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only the right part of the cross section is consid-

ered below (Fig. 1). The calculations use known 

methods for studying the quasi-static elastic-

plastic [14, 15 – 17] model, considering the 

non-stationarity of the load and using numerical 

integration implemented in the calculation of 

the dynamic elastic model [1 – 5]. 

 

 
Fig. 1. Geometric scheme of the problem 

 

 

The equations of the plane dynamic theory 

are considered, for which the components of the 

displacement vector ( , )x yu uu   are related to 

the components of the strain tensor by Cauchy 

relations:  

1
,   ,   .

2

y yx x
xx yy xy

u uu u

x y y x
  

   
    
    

 

The equations of motion of the medium have 

the form:  
2

2

2

2

,

,

xyxx x

xy yy y

u

x y t

u

x y t




 


 
 

  

  
 

  

   (1) 

where   − material density. 

The boundary and initial conditions of the 

problem have the form: 

 

0,  0 : 0, 0,

/ 2,0 : 0, 0,

0,  0 / 2 :  0, 0,

,  0 :  , 0,

,  / 2 :  0, 0.

x xy

xx xy

y xy

yy xy

yy xy

x y B u

x L y B

y x L u

y B x A P

y B A x L



 



 

 

    

    

    

     

    

 (2) 

00 0
0, 0, 0,x y z tt t

u u u
 

     (3) 

00 0
0,  0, 0.x y z tt t

u u u
 

    

The determinant relations of the mechanical 

model are based on the theory of non-isother-

mal plastic flow of the medium with hardening 

under the condition of Huber-Mises fluidity. 

The effects of creep and thermal expansion are 

neglected. Then, considering the components of 

the strain tensor by the sum of its elastic and 

plastic components [18, 19], we obtain expres-

sion for them: 

 

,  ,

1
.

2

p pe
ij ij ijij ij

e
ij ij

d s d

s K
G

    

  

  

  
  (4) 

 

here ij ij ijs       – stress tensor deviator; 

ij  – Kronecker symbol; Е – modulus of elas-

ticity (Young's modulus); G – shear modulus; 

1 (1 2 ) / (3 )K E   , 13K K   – volumetric 

compression modulus, which binds in the ratio 

K     volumetric expansion 3  (thermal 

expansion 0   ); ( ) 3xx yy zz        − 

mean stress; d  – some scalar function [15], 

which is determined by the shape of the load 

surface and we assume that this scalar function 

is quadratic function of the stress deviator ijs  

[18, 19]. 
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The material is strengthened with a harden-

ing factor *  [1, 2, 26 – 28]: 

 
*

02 0
0

02 0
0

( )
( ) ( ) 1 ,  

( )
,

S
T

T T

T

E




 





 
  

 



  (6) 

 

where T – temperature;   – Odquist parameter, 

0 20T C  , *   – hardening coefficient; 

( )S T  – yield strength after hardening of the 

material at temperature T. 

Rewrite (4) in expanded form: 

 

( ) ,
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 (7) 

 

In contrast to the traditional plane defor-

mation, when ( , ) constzz x y  , for a refined 

description of the deformation of the specimen, 

taking into account the possible increase in lon-

gitudinal elongation zz , we present in its 

form [12, 13, 19]: 

 
0( , ) ,zz zz x yx y x y           (8) 

 

where unknown x  and y  describe the 

bending of the prismatic body (which simulates 

the plane strain state in the solid mechanics) in 

the Ozx and Ozy planes, respectively, and 0
zz  

– the increments according to the detected de-

formation bending along the fibers 0.x y   

 

SOLUTION ALGORITHM 

 

Let the nonstationary interaction [1 – 3, 13, 

14] occur in a time interval *[0, ]t t . Then for 

every moment of time t: 
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 (9) 

 

For numerical integration over time, Grego-

ry's quadrature formula [20] of order 1 3m   

with coefficients nD  was used. After discretisa-

tion in time with nodes 

*[0, ] ( 0, )kt k t t k K     for each value k 

we write down the corresponding node values 

of deformation increments: 
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The solution of the system (10) gives expres-

sions for the components of the stress tensor at 

each step: 
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(11) 

Function 1 (2 )G    , which is charac-

terizing the yield condition, taking into account 

(8), (9), (11) is: 
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Considering when calculating the value p
zz , 

found that its impact is so small that without re-

ducing the accuracy of calculations can be con-

sidered 0p
zz  . 

To take into account [13, 14] the physical 

nonlinearity contained in conditions (12), the 

method of successive approximations is used, 

which makes it possible to reduce a nonlinear 

problem to a sequence of linear problems 

[15 – 17]: 
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n
iS Si T          (13) 

 

where Q – the value of the largest deviation of 

the stress intensity 
( )n
i   in step n from the 

strengthened yield strength; n – is the approxi-

mation number 

Unknown [20] x , y  and 0
zz  in (8) are 

determined from the conditions of equilibrium 

of even with respect to x normal stresses zz . 

 

( , ) , ( 1, , ),zz x y dxdy M x y  



       (14) 

 

when 1 0x yM M M   ; where 1M  – projec-

tion on the axis Oz of the main vector of contact 

stresses, and ,x yM M   – corresponding pro-

jections of the main moment of the forces acting 

on the resistance (no torsion, as noted). Given 

the symmetry of the problem and 

( , ) ( , )zz zzx y x y    this equation in case of 

x   is satisfied automatically. 

If we substitute (8) and (11) in (14), taking 

into account the symmetry of the integration 

domain with respect to x and the even of func-

tions , ,, ,xx k yy k zzb   , we have 0x   . A 

system of linear algebraic equations is obtained 
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for the calculation of 0 ,zz y   : 

0
1 , ( 1, ),zz y yL L M y          (15) 

 2

1

1

,

, ( , 1, , ).

xx yy zz

r

b
M rdxdy

rdxdy
L r x y





  













 


 





  

 

The stresses and strains used above were de-

termined for each unit cell from the numerical 

solution at each point in time kt k t . 

 

NUMERICAL SOLUTION 

 

The explicit scheme of the finite difference 

method was used with a variable partitioning 

step along the axes Ox (M elements) and Oy (N 

elements). The step between the split points was 

the smallest in the area of the layers contact and 

at the boundaries of the computational domain. 

Since the interaction process is fleeting, this did 

not affect the accuracy in the first thin layer, ar-

eas near the boundaries, and the adequacy of the 

contact interaction modelling. 

The use of finite differences [21] with varia-

ble partition step for wave equations is justified 

in [22], and the accuracy of calculations with an 

error of no more than 

 2 2 2( ) ( ) ( )O x y t   
,
 where x , y  and 

t  – increments of variables: spatial x and y 

and time t. A low rate of change in the size of 

the steps of the partition mesh was ensured. The 

time step was constant. 

The resolving system of linear algebraic 

equations with a banded symmetric matrix was 

solved by the Gauss method according to the 

Cholesky scheme. 

In [23], during experiments, compact sam-

ples were destroyed in 21 – 23 ms. The process 

of destruction of compact specimens from a 

material of size and with contact loading as in 

[23] was modelled in a dynamic elastoplastic 

formulation, considering the unloading of the 

material and the growth of a crack according to 

the local criterion of brittle fracture. The sam-

ples were destroyed in 23 ms. This confirms the 

correctness and adequacy of the developed for-

mulation and model. 

 

Figs. 2 – 29 show the results of calculations 

of two layers specimens with a hardening factor 

of the material * 0,05   . The first high layer 

has made from hard steel. The second main low 

layer has made from quartz glass. Contact be-

tween two layers is an ideal. Calculations were 

made at the following parameter values: tem-

perature 50 CT   ; 60 mmL   ; 10 mmB   ; 

0.3 mmh   ; 
83.21 10  st    ; 01 8 MPap   ; 

02 10 MPap   ; 62M   ; 100N   . The smallest 

splitting step was 0,005 mm, and the largest 2,6 

mm min( 0,005 mm ;x    min 0,0 mm1 y   

(only the first layer); max 2  mm,6x   ; 

max 0,6 mm5 y  ). 

Fig. 2 shows plots of the Odquist parameter 
  in the cell of the first layer, which is located 

in the centre of the specimen at a depth of 0.25 

mm. Solid, dotted, and solid with a circle lines 

correspond to cases where the size of the con-

tact zone was equal 12 0.3 mma A a    , 

2 0.5 mma a   and 3 0.7 mma a  , respec-

tively. 

Figs. 3 – 11, 12 – 20, 21 – 29 show the fields 

of the Odquist parameter  , normal stresses 

  and   at times  , 

  and  , respec-

tively. 

From Figs. 2 – 5, 12 – 14 and 21 – 23 it can 

be seen that if the smaller the contact zone then 

the bigger the plastic deformations, however, at 

the end of the process of non-stationary interac-

tion, they are of the same degree. 

 

Fig. 2. Odquist parameter , 

when ,  


xx yy 6

1 2.57 10  st 

6
2 3.82 10  st 

6
3 5.13 10  st 



1a a 1t t
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Fig. 3. Odquist parameter  

when ,  

 
 

Fig. 4. Odquist parameter  

when ,  

 
 

Fig. 5. Odquist parameter  

when ,  

 

Fig. 6. Stress  when , 

 

 

Fig. 7. Stress  when , 

 

 

Fig. 8. Stress  when , 

 

 

Fig. 9. Stress  when , 

 

 

Fig. 10. Stress  , 

 

 

Fig. 11. Stress  , 
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1a a 2t t



1a a 3t t

xx 1a a

1t t

xx 1a a

2t t

xx
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3t t

yy 1a a

1t t
yy

1a a

2t t

yy 1a a

3t t
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Fig. 12. Odquist parameter  

when ,  

 
Fig. 13. Odquist parameter  

when ,  

 
Fig. 14. Odquist parameter  

when ,  

 
Fig. 15. Stress  when 

,  

 

Fig. 16. Stress  when 

,  

 
Fig. 17. Stress  when 

,  

 
Fig. 18. Stress  when 

,  

 
Fig. 19. Stress  when 

,  

 
Fig. 20. Stress  when 

,  

 



2a a 1t t



2a a 2t t



2a a 3t t

xx

2a a 1t t
xx

2a a 2t t
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2a a 3t t
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2a a 2t t

yy

2a a 3t t
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Fig. 21. Odquist parameter  

when ,  

 
Fig. 22. Odquist parameter  

when ,  

 
Fig. 23. Odquist parameter  

when ,  

 
Fig. 24. Stress  when 

,  

 
Fig. 25. Stress  when 

,  

 
Fig. 26. Stress  when 

,  

 
Fig. 27. Stress  when 

,  

 
Fig. 28. Stress  when 

,  

 
Fig. 29. Stress  when 

,  
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Figs. 3 − 29 show that the highest stresses 

occur in the upper layer of the metal and the 

process of accumulation of plastic deformations 

is more intense there. Figs.6 − 8, 15 − 17, 24 − 

26 show areas where the normal stresses  in 

the lower layer are tensile. 

In the case when the contact zone , at 

the moment of time  the area with tensile 

stresses is located in the middle under the 

boundary between the layers. This is due to the 

fact that compressive stresses arise in the upper 

layer quickly and the contact between the layers 

is ideally rigid. 

Areas where the normal stresses  in the 

lower layer are tensile are visible from Figs.11, 

20, 29. 

At times , , when the contact zone is , at 

times , , , when the contact zone is equal 

 and  areas with tensile stresses  in the 

lower layer are located near its lower boundary. 

This is due to the fact that the investigated 

deformation process has a wave character and 

the contact of the lower boundary of the lower 

layer with an absolutely rigid base is ideally 

rigid. 

This also explains that at the moment of time 

 for all cases of the length of the contact zone, 

the areas where the normal stresses  are ten-

sile are located near the lower boundary . 

 

CONCLUSIONS 

 

The developed methodology of solving dy-

namic contact problems in an elastic-plastic dy-

namic mathematical formulation makes it pos-

sible to model the processes of impact, shock 

and non-stationary contact interaction with the 

elastic composite base more adequately. In this 

work, the process of impact on a two-layer base, 

consisting of an upper thin layer of metal and a 

lower main layer of glass, is adequately mod-

elled and investigated. The fields of summary 

plastic deformations and normal stresses arising 

in the base are calculated depending on the size 

of the area of an initial contact between the im-

pactor and the upper surface of the base. The 

area under the stamp in the glass layer under the 

metal layer is shown, where there are small ten-

sile normal stresses xx , which are most likely 

due to the propagation of impact waves in the 

base material. The results obtained make it pos-

sible to design new composite reinforced armed 

materials. Such a two-layer reinforced compo-

site material can be used as a plate of a body 

armor and a wide range of needs of modern in-

dustry. 
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Задача о плоском деформированном со-

стоянии двухслойного тела в динамической 

упругопластической постановке (Часть I) 

 

Владислав Богданов 

 

Аннотация. Проектирование композитных и 

армированных материалов является требова-

нием современного уровня производства и 

жизни. С успехом используются многие методы 

расчетов и проектирования таких материалов. В 

данной статье для проектирование композитных 

и армированных материалов используется мето-

дика решения динамических контактных задач в 

упругопластической математической поста-

новке. 

Для учета физической нелинейности про-

цесса деформирования используется метод по-

следовательных приближений, позволяющий 

свести нелинейную задачу к решению. последо-

вательности линейных задач. В отличие от тра-

диционной плоской деформации, когда одно 

нормальное напряжение равняется некоторому 

постоянному значению, для уточненного описа-

ния деформации образца с учетом возможного 

увеличения продольного удлинения приведем 

это нормальное напряжение в виде функции, за-

висящей от параметров, которые описывают из-

гиб призматического тела, которое находится в 

состоянии плоской деформации. 

Решается задача плоского деформированного 

состояния композитной балки стеклопакета, ко-

торая жестко сцеплена с абсолютно твердым ос-

нованием и на которую сверху по центру на не-

большой площадке начального контакта дей-

ствует абсолютно твердый ударник. Стеклопакет 

состоит из двух слоев: верхний (первый) тонкий 

из твердой стали и нижний (второй) основной из 

стекла. 

Стекло является очень прочным и очень 

хрупким материалом одновременно. Хрупкость 

стекла обуславливается тем, что на поверхности 

располагается множество микротрещин и при 

приложении нагрузки к поверхности стекла эти 

микротрещины начинают расти и приводят к 

разрушению стеклянных изделий. Если склеить 
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или обездвижить вершины микротрещин на по-

верхности, то получим прочный армированный 

материал, который будет более легким, прочным 

и не подверженным процессам деградации 

свойств материала таким, как процессы старе-

ния, коррозии и ползучести. Верхний армирую-

щий слой метала можно наносить на поверх-

ность стекла путем напыления так, чтобы атомы 

металла стали глубоко проникали, заполняли 

микротрещины и связывали их вершины. Верх-

ний слой может быть достаточно тонким. 

Ключевые слова: Плоская деформация, удар, 

композитные материалы, армированные матери-

алы, бронированные материалы, упругопласти-

ческая, деформация. 


