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Abstract. Composite materials are widely used 

in industry and everyday life. Mathematical model-

ling of composite materials began to be actively de-

veloped in the 50s and 60s of the last century. Com-

posite materials began to be actively used in indus-

try only at the end of the 70s of the last century. 

From that time to this day, interest in composite ma-

terials has not weakened, and the demands of mod-

ern industry and production are constantly increas-

ing. The areas and branches of application of com-

posite materials are expanding. Many different 

methods are used to calculate and develop compo-

site materials. This article is part two of the previous 

article, where there is an investigation of the contact 

problem of the interaction of a striker with a two-

layers composite base in a dynamic elastic-plastic 

mathematical formulation. This composite base is 

rigidly attached to an absolutely hard half-space. Its 

first (top) layer is made of steel, and the second (bot-

tom) layer is made of glass. Glass is a widely avail-

able cheap amorphous material, the properties of 

which cannot be degraded as an result of aging, cor-

rosion, and creep processes. The glass layer can be 

strengthened by reinforcement and hardening. 

Therefore, composite materials made on the basis of 

glass are important in modern production; their use 

gives a great economic benefit. Rigid adhesion of 

the layers to each other is assumed. The impact pro-

cess was modelled as a non-stationary plane strain 

state problem with an even distributed load in the 

contact area, which changes according to a linear 

law. The fields of the Odquist parameter and normal 

stresses were studied depending on the size of the 

contact area. In this article as in part I for the design 

 

of composite and reinforced material the non-sta-

tionary contact problem of plane strain state has 

been solved in more precise elastic-plastic mathe-

matical formulation. To consider the physical non-

linearity of the deformation process, the method of 

successive approximations is used, which makes it 

possible to reduce the nonlinear problem to a solu-

tion of the sequences of linear problems.  

In contrast to the previous article (Part I), in this 

papers there is an investigation of the strain-stress 

state, the fields of the Odquist parameter and normal 

stresses depending on the thickness of the first (up-

per) steel layer. 

Keywords: Plane, strain, impact, composite ma-

terial, armed material, reinforced material, elastic-

plastic, deformation. 

 

INTRODUCTION 

 

Glass is a very strong and very fragile mate-

rial at the same time. The fragility of glass is 

due to the fact that there are many microcracks 

on the surface, and when a load is applied to the 

glass surface, these microcracks begin to grow 
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and lead to the destruction of glass products. If 

we glue or immobilize the tops of microcracks 

on the surface, we will get a strong reinforced 

armed material that will be lighter, stronger and 

not subject to degradation of material properties 

such as aging, corrosion and creep. The upper 

reinforcing layer of metal can be applied to the 

glass surface by sputtering so that the metal at-

oms of the steel penetrate deeply, fill mi-

crocracks and bind their tops. The top layer can 

be quite thin. 

Glass is also convenient in that it can be 

poured into the frame of the reinforcement and 

thus can be further strengthened. As reinforcing 

elements, metal wire, polysilicate, polymer, 

polycarbon compounds, which can have a fairly 

small thickness, can be used. The thickness of 

such reinforcing materials can be equal to the 

thickness of several atomic layers, such as gra-

phene. 

In [1, 2], a new approach to solving the prob-

lems of impact and nonstationary interaction in 

the elastoplastic mathematical formulation was 

developed. In this papers like in non-stationary 

problems [3, 4], the action of the striker is re-

placed by a distributed load in the contact area, 

which changes according to a linear law. The 

contact area remains constant. The developed 

elastoplastic formulation makes it possible to 

solve impact problems when the dynamic 

change in the boundary of the contact area is 

considered and based on this the movement of 

the striker as a solid body with a change in the 

penetration speed is taken into account. Also, 

such an elastoplastic formulation makes it pos-

sible to consider the hardening of the material 

in the process of nonstationary and impact in-

teraction.  

The solution of problems for composite cy-

lindrical shells [5], elastic half-space [6], elastic 

layer [7], elastic rod [8, 9] were developed us-

ing method of the influence functions [10]. 

In contrast from the work [11], in this paper, 

we investigate the impact process of hard body 

with plane area of its surface on the top of the 

composite beam which consists first thin metal 

layer and second main glass layer. In contrast 

from the work [12], the fields of plastic defor-

mations and, stresses were determined relative 

to the thickness of the first top layer of compo-

site base. 

PROBLEM FORMULATION AND 

SOLUTION ALGORITHM 

 

Deformations and their increments [1 – 4], 

Odquist parameter, effective and principal 

stresses are obtained from the numerical solu-

tion of the dynamic elastic-plastic interaction 

problem of infinite composite beam 

{ / 2 / 2;L x L     0 ; }y B z        in 

the plane of its cross section in the form of rec-

tangle. It is assumed that the stress-strain state 

in each cross section of the cylinder is the same, 

close to the plane deformation, and therefore it 

is necessary to solve the equation for only one 

section in the form of a rectangle L B    

with two layers: first steel layer 
{ / 2 / 2;L x L   ;z   

}B h y B     and second glass layer 

{ / 2 / 2;L x L   0 ; }y B h z        

a notch-crack with length l along the segment 

and contacts absolute hard half-space { 0}y  . 

We assume that the contact between the lower 

surface of the first metal layer and the upper 

surface of the second glass layer is ideally rigid. 

From above on a body the absolutely rigid 

drummer contacting along a segment { ;x A  

}y B . Its action is replaced by an even dis-

tributed stress P  in the contact region, which 

changes over time as a linear function 

01 02P p p t  . Given the symmetry of the de-

formation process relative to the line 0x   , 

only the right part of the cross section is consid-

ered below (Fig. 1). 

The equations of the plane dynamic theory 

are considered, for which the components of the 

displacement vector  are related to 

the components of the strain tensor by Cauchy 

relations: 

 

 
 

Fig. 1. Geometric scheme of the problem 
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The equations of motion of the medium have 

the form:  
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where   − material density. 

The boundary and initial conditions of the 

problem have the form: 
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    (3) 

 

The determinant relations of the mechanical 

model are based on the theory of non-isother-

mal plastic flow of the medium with hardening 

under the condition of Huber-Mises fluidity. 

The effects of creep and thermal expansion are 

neglected. Then, considering the components of 

the strain tensor by the sum of its elastic and 

plastic components [13, 14], we obtain expres-

sion for them: 

 

,  ,

1
.

2

p pe
ij ij ijij ij

e
ij ij

d s d

s K
G

    

  

  

  
  (4) 

 

here ij ij ijs       – stress tensor deviator; 

ij  – Kronecker symbol; Е – modulus of elas-

ticity (Young's modulus); G – shear modulus; 

 

 

1 (1 2 ) / (3 )K E   , 13K K   – volumetric 

compression modulus, which binds in the ratio 

K     volumetric expansion 3  (thermal 

expansion 0   ); ( ) 3xx yy zz        − 

mean stress; d  – some scalar function [15], 

which is determined by the shape of the load 

surface and we assume that this scalar function 

is quadratic function of the stress deviator ijs  

[13 – 15]. 
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The material is strengthened with a harden-

ing factor *  [1 – 4]: 

 
*

02 0
0

02 0
0
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T T
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 (6) 

 

where T – temperature;   – Odquist parameter, 

0 20T C  , *   – hardening coefficient; 

( )S T  – yield strength after hardening of the 

material at temperature T. 

 

Rewrite (4) in expanded form: 
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In contrast to the traditional plane defor-

mation, when ( , ) constzz x y  , for a refined 

description of the deformation of the specimen, 

taking into account the possible increase in lon-

gitudinal elongation zz , we present in its 

form [2 – 4, 16]: 

 
0( , ) ,zz zz x yx y x y           (8) 

 

where unknown x  and y  describe the 

bending of the prismatic body (which simulates 

the plane strain state in the solid mechanics) in 

the Ozx and Ozy planes, respectively, and 0
zz  

– the increments according to the detected de-

formation bending along the fibers 0.x y   

The solution algorithm is the same as in [12]. 

 

NUMERICAL SOLUTION 

 

The explicit scheme of the finite difference 

method was used with a variable partitioning 

step along the axes Ox (M elements) and Oy (N 

elements). The step between the split points was 

the smallest in the area of the layers contact and 

at the boundaries of the computational domain. 

Since the interaction process is fleeting, this did 

not affect the accuracy in the first thin layer, ar-

eas near the boundaries, and the adequacy of the 

contact interaction modelling. 

The use of finite differences [17] with varia-

ble partition step for wave equations is justified 

in [18], and the accuracy of calculations with an 

error of no more than 

 2 2 2( ) ( ) ( )O x y t      where x  , y   and 

t  – increments of variables: spatial x and y 

and time t. A low rate of change in the size of 

the steps of the partition mesh was ensured. The 

time step was constant. 

The resolving system of linear algebraic 

equations with a banded symmetric matrix was 

solved by the Gauss method according to the 

Cholesky scheme. 

In [19], during experiments, compact sam-

ples were destroyed in 21 – 23 ms. The process 

of destruction of compact specimens from a 

material of size and with contact loading as in 

[19] was modelled in a dynamic elastoplastic 

formulation, considering the unloading of the 

material and the growth of a crack according to 

the local criterion of brittle fracture. The sam-

ples were destroyed in 23 ms. This confirms the 

correctness and adequacy of the developed for-

mulation and model. 

Figs. 2 – 29 show the results of calculations 

of two layers specimens with a hardening factor 

of the material * 0,05   . The first high layer 

has made from hard steel and its thickness was 

equal 1 0.1 mmh h   , 2 0.3 mmh h    and 

3 0.5 mmh h   . The second main low layer 

has made from quartz glass. Contact between 

two layers is an ideal. Calculations were made 

at the following parameter values: temperature 

50 CT   ; the size of the contact zone 

2 0.5 mma A   ; 60 mmL   ; 10 mmB   ; 
83.21 10  st    ; 01 8 MPap   ; 02 10 MPap   ; 

62M   ; 100N   . The smallest splitting step 

was 0,005 mm, and the largest 2,6 mm 

min( 0,005 mm ;x   min 0,0 mm1 y   (only the 

first layer); max 2  mm,6x   ; 

max 0,6 mm5 y  ). 

Figs. 2 – 4, 11 – 13, 20 – 22 show the fields 

of the Odquist parameter   , normal stresses 

xx   and yy   respectively at the time 

6
1 2.57 10  st  . The fields of Odquist parame-

ter  , normal stresses   and   respec-

tively are at the Figs. 5 – 7, 14 – 16, 23 – 25 at 

the time . Figs. 8 – 10, 17 – 19, 

26 – 28 show the fields of ,  and  re-

spectively at the time  . 

 

 xx yy

6
2 3.82 10  st 

 xx yy

6
3 5.13 10  st 
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Fig. 2. Odquist parameter  

when 1h h ,  

 
Fig. 3. Odquist parameter  

when 2h h ,  

 
Fig. 4. Odquist parameter  

when 3h h ,  

 
Fig. 5. Odquist parameter  

when 1h h ,  

 
Fig. 6. Odquist parameter  

when 2h h ,  

 
Fig. 7. Odquist parameter  

when 3h h ,  

 
Fig. 8. Odquist parameter  

when 1h h ,  

 
Fig. 9. Odquist parameter  

2h h ,  

 
Fig. 10. Odquist parameter  

3h h ,  
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Fig. 11. Stress  when 1h h , 

 

 

Fig. 12. Stress  when 2h h , 

 

 

Fig. 13. Stress  when 3h h , 

 

 

Fig. 14. Stress  when 1h h , 

 

 

Fig. 15. Stress  when 

2h h ,  

 

Fig. 16. Stress  when 3h h , 

 

 

Fig. 17. Stress  when 1h h , 

 

 

Fig. 18. Stress  when 

2h h ,  

 

Fig. 19. Stress  when 

3h h ,  
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Fig. 20. Stress  when 1h h , 

 

 

Fig. 21. Stress  when 

2h h ,  

 

Fig. 22. Stress  when 3h h , 

 

 

Fig. 23. Stress  when 1h h , 

 

 

Fig. 24. Stress  when 

2h h ,  

 

Fig. 25. Stress  when 3h h , 

 

 

Fig. 26. Stress  when 1h h , 

 

 

Fig. 27. Stress  when 2h h , 

 

 

Fig. 28. Stress  when 3h h , 
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The radius of propagation of the summary 

plastic deformations from the centre of the con-

tact zone with the indenter in the upper layer 

(Figs. 2 – 4) at the moment of time 1t t  does 

not depend on the thickness of the upper metal 

layer. 

From Figs. 5 – 7 it can be seen that at the 

moment of time 2t t , if the metal layer is the 

thicker than the plastic deformations in it are the 

more intense and the plastic deformations in the 

glass layer in the area that borders the upper 

metal layer under the zone of contact between 

the base and the striker are smaller. 

When 3t t  (Figs. 8 – 10) the largest values 

of the Odquist parameter occur in the thinner 

upper layer. When 2t t   (Figs. 11 – 19), the 

largest normal stresses in absolute value occur 

in the upper layer with the smaller thickness. 

In the region of the lower boundary of the 

lower layer, linked to the rigid half-space, ten-

sile stresses arise. This is due to the wave nature 

of the impact process and the rigid adhesion of 

the lower surface of the lower layer. Moreover, 

the greatest of these tensile stresses occur when 

the thickness of the upper layer is greater.  

At the moment of time 1t t  (Figs. 20 – 22) 

in the metal layer, the compressive normal 

stresses yy   are greater in the thicker layer. 

When 2t t  (Figs. 23 – 28) the maximum com-

pressive (maximum in absolute value) stresses 

yy  decrease with the thickness of the layer. 

At moment 3t t   in the area of the lower 

boundary of the lower glass layer, the greatest 

tensile stresses will increase with an increase in 

the thickness of the upper layer. Most likely, for 

this steel, it makes no sense to increase the 

thickness of the upper layer more than 0.5 mm. 

 

CONCLUSIONS 

 

The developed methodology of solving dy-

namic contact problems in an elastic-plastic dy-

namic mathematical formulation makes it pos-

sible to model the processes of impact, shock 

and non-stationary contact interaction with the 

elastic composite base more adequately. In this 

work, the process of impact on a two-layer base, 

consisting of an upper thin layer of metal and a 

lower main layer of glass, is adequately mod-

elled. The fields of summary plastic defor-

mations and normal stresses arising in the base 

are calculated depending on the thickness of top 

metal layer of the composite base. The results 

obtained make it possible to design new com-

posite reinforced armed materials. 
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Задача о плоском деформированном состоя-

нии двухслойного тела в динамической упру-

гопластической постановке (Часть ІІ) 

 

Владислав Богданов 

 

Аннотация. Композитные материалы ши-

роко используются в промышленности и повсе-

дневной жизни. Математическое моделирование 

композитных материалов начинает активно раз-

рабатываться в 50-х и 60-х годах прошлого века 

Композитные материалы начинают активно ис-

пользоваться в промышленности только в конце 

70-х годов прошлого столетия. С этого времени 

и по сей день интерес к композитным материа-

лам не ослабевает, а запросы современной про-

мышленности и производства все время увели-

чиваются. Расширяются области и отрасли при-

менения композитных материалов. Для расчетов 

и разработки композитных материалов исполь-

зуется много различных методов. Данная статья 

есть часть вторая от предыдущей статьи, в кото-

рой рассматривается контактная задача о взаи-

модействии ударника с двухслойным композит-

ным основанием в динамической упругопласти-

ческой математической постановке. Это компо-

зитное основание жестко сцеплено с абсолютно 

твердым полупространством. Его первый (верх-

ний) слой изготовлен из стали, а второй (нижний) 

– слой стекла. Стекло общедоступный дешевый 

аморфный материал, свойства которого не под-

даются деградации в результате процессов ста-

рения, коррозии, ползучести. Слой стекла воз-

можно усиливать за счет армирования и закалки. 

Поэтому композитные материалы, изготовлен-

ные на основе стекла, важны в современном 

производстве их использование дает большой 

экономический эффект. Предполагается жесткое 

сцепление слоев между собой. Процесс удара 

моделировался как нестационарная задача с рав-

номерно распределенной нагрузкой в области 

контакта, изменяющейся по линейному закону. 

Были исследованы поля параметра Одквиста и 

нормальных напряжений в зависимости от раз-

мера области контакта. В отличие от предыду-

щей статьи (Часть I) в данной статье исследуется 

напряженно-деформированное состояние, поля 

параметра Одквиста и нормальных напряжений 

в зависимости от толщины первого (верхнего) 

слоя. 

Ключевые слова: Плоская деформация, удар, 

композитные материалы, армированные матери-

алы, бронированные материалы, упругопласти-

ческая, деформация. 


