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Abstract. Composite materials are widely used
in industry and everyday life. Mathematical model-
ling of composite materials began to be actively de-
veloped in the 50s and 60s of the last century. Com-
posite materials began to be actively used in indus-
try only at the end of the 70s of the last century.
From that time to this day, interest in composite ma-
terials has not weakened, and the demands of mod-
ern industry and production are constantly increas-
ing. The areas and branches of application of com-
posite materials are expanding. Many different
methods are used to calculate and develop compo-
site materials. This article is part two of the previous
article, where there is an investigation of the contact
problem of the interaction of a striker with a two-
layers composite base in a dynamic elastic-plastic
mathematical formulation. This composite base is
rigidly attached to an absolutely hard half-space. Its
first (top) layer is made of steel, and the second (bot-
tom) layer is made of glass. Glass is a widely avail-
able cheap amorphous material, the properties of
which cannot be degraded as an result of aging, cor-
rosion, and creep processes. The glass layer can be
strengthened by reinforcement and hardening.
Therefore, composite materials made on the basis of
glass are important in modern production; their use
gives a great economic benefit. Rigid adhesion of
the layers to each other is assumed. The impact pro-
cess was modelled as a non-stationary plane strain
state problem with an even distributed load in the
contact area, which changes according to a linear
law. The fields of the Odquist parameter and normal
stresses were studied depending on the size of the
contact area. In this article as in part I for the design
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of composite and reinforced material the non-sta-
tionary contact problem of plane strain state has
been solved in more precise elastic-plastic mathe-
matical formulation. To consider the physical non-
linearity of the deformation process, the method of
successive approximations is used, which makes it
possible to reduce the nonlinear problem to a solu-
tion of the sequences of linear problems.

In contrast to the previous article (Part I), in this
papers there is an investigation of the strain-stress
state, the fields of the Odquist parameter and normal
stresses depending on the thickness of the first (up-
per) steel layer.

Keywords: Plane, strain, impact, composite ma-
terial, armed material, reinforced material, elastic-
plastic, deformation.

INTRODUCTION

Glass is a very strong and very fragile mate-
rial at the same time. The fragility of glass is
due to the fact that there are many microcracks
on the surface, and when a load is applied to the
glass surface, these microcracks begin to grow
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and lead to the destruction of glass products. If
we glue or immobilize the tops of microcracks
on the surface, we will get a strong reinforced
armed material that will be lighter, stronger and
not subject to degradation of material properties
such as aging, corrosion and creep. The upper
reinforcing layer of metal can be applied to the
glass surface by sputtering so that the metal at-
oms of the steel penetrate deeply, fill mi-
crocracks and bind their tops. The top layer can
be quite thin.

Glass is also convenient in that it can be
poured into the frame of the reinforcement and
thus can be further strengthened. As reinforcing
elements, metal wire, polysilicate, polymer,
polycarbon compounds, which can have a fairly
small thickness, can be used. The thickness of
such reinforcing materials can be equal to the
thickness of several atomic layers, such as gra-
phene.

In [1, 2], a new approach to solving the prob-
lems of impact and nonstationary interaction in
the elastoplastic mathematical formulation was
developed. In this papers like in non-stationary
problems [3, 4], the action of the striker is re-
placed by a distributed load in the contact area,
which changes according to a linear law. The
contact area remains constant. The developed
elastoplastic formulation makes it possible to
solve impact problems when the dynamic
change in the boundary of the contact area is
considered and based on this the movement of
the striker as a solid body with a change in the
penetration speed is taken into account. Also,
such an elastoplastic formulation makes it pos-
sible to consider the hardening of the material
in the process of nonstationary and impact in-
teraction.

The solution of problems for composite cy-
lindrical shells [5], elastic half-space [6], elastic
layer [7], elastic rod [8, 9] were developed us-
ing method of the influence functions [10].

In contrast from the work [11], in this paper,
we investigate the impact process of hard body
with plane area of its surface on the top of the
composite beam which consists first thin metal
layer and second main glass layer. In contrast
from the work [12], the fields of plastic defor-
mations and, stresses were determined relative
to the thickness of the first top layer of compo-
site base.
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PROBLEM FORMULATION AND
SOLUTION ALGORITHM

Deformations and their increments [1 — 4],
Odquist parameter, effective and principal
stresses are obtained from the numerical solu-
tion of the dynamic elastic-plastic interaction
problem of infinite composite beam
{-L/2<x<L/2;, 0<y<B;—o0<z<ow} in
the plane of its cross section in the form of rec-
tangle. It is assumed that the stress-strain state
in each cross section of the cylinder is the same,
close to the plane deformation, and therefore it
is necessary to solve the equation for only one
section in the form of a rectangle Z=LxB
with  two layers: first steel layer
{-L/2<x<L/2 —© L 72 L o
B-h<y<B} and second glass Ilayer
{-L/2<x<L/2;,0£sy<B-h;—e0<z<o0}
a notch-crack with length / along the segment
and contacts absolute hard half-space {y < 0}.
We assume that the contact between the lower
surface of the first metal layer and the upper
surface of the second glass layer is ideally rigid.

From above on a body the absolutely rigid
drummer contacting along a segment {{x| < A;
y = B}. Its action is replaced by an even dis-
tributed stress —P in the contact region, which
changes over time as a linear function
P = pp1 + Pgot . Given the symmetry of the de-

formation process relative to the line x=0,
only the right part of the cross section is consid-
ered below (Fig. 1).

The equations of the plane dynamic theory
are considered, for which the components of the
displacement vector u = (uy,u,) are related to

the components of the strain tensor by Cauchy
relations:

y
gLl
B-h
O:—_{
A L2

Fig. 1. Geometric scheme of the problem
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The equations of motion of the medium have
the form:

2
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where p — material density.

The boundary and initial conditions of the
problem have the form:

x=0,0<y<B:iuy, =0, oy =0,
x=L/2,0<y<B:oy =0, o, =0,
y=0,0<x<L/2: Uy =0, oy, =0, (2)
y=B, 0<x<A: GW=—P, axy=0,
y=B, A<x<L/2: oy, =0, gy =0.

Uylog =0, uy‘t=0 =0, U _, =0,

(3)

Wkﬁ=0,UAh0=thLO=Q

The determinant relations of the mechanical
model are based on the theory of non-isother-
mal plastic flow of the medium with hardening
under the condition of Huber-Mises fluidity.
The effects of creep and thermal expansion are
neglected. Then, considering the components of
the strain tensor by the sum of its elastic and
plastic components [13, 14], we obtain expres-
sion for them:

€
c‘,‘ij =8ij +8i}), dé‘in = Sijd/l,

4)

1
e [ — ..
&ij = G S'J + Ko +¢.
here sj; =0 —djjo — stress tensor deviator;
djj — Kronecker symbol; £ — modulus of elas-

ticity (Young's modulus); G — shear modulus;
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Ki=1-2v)/(BE) , K=3K; - volumetric
compression modulus, which binds in the ratio
& =Ko + ¢ volumetric expansion 3¢ (thermal

expansion ¢=0); o=(0x+0y +0,)/3 —
mean stress; d A — some scalar function [15],
which is determined by the shape of the load

surface and we assume that this scalar function
is quadratic function of the stress deviator s;

[13 - 15].

(0 (f =0?-cd(T)<0)
3d Sip
Oj

(f >0 —inadmissible)

dA =+

(f=0,df =0) , (5)

dg =g((d8)& —dgﬁy)z +(dg)g( —dgzpz)2 +

p _dgzr;)2+6(dgxpy)2]%,

o =%((GXX ‘Uyy)z +(on—0g) +
2 ]%

2
+(c7yy - JZZ) +60yy

The material is strengthened with a harden-
ing factor n* [1 —4]:

0

-
Os U)=002(T0)(1+K—m] :
& (6)

002(Tp)
g = 0E0 1

where 7 — temperature; K — Odquist parameter,
To=20°C , p* — hardening coefficient;

o5 (T) — yield strength after hardening of the
material at temperature 7.

Rewrite (4) in expanded form:
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Oy —O
dey =d (X;—G+ KO']+ (o —0)d A,

Oy —0
deyy =d G +Ko |+ (oyy —0)dA,
(7)

O, —C

de,, =d (Z;—G+ KO']+(O'ZZ —o)dA,
Ox

ngy =d [z—é]+nydﬂ,

In contrast to the traditional plane defor-
mation, when Ae,, (X, y) = const, for a refined

description of the deformation of the specimen,
taking into account the possible increase in lon-

gitudinal elongation Ag,, , we present in its
form [2 - 4, 16]:

A&z (X, y)=Aggz + A X+ Ay, (8)

where unknown Ayy and Ay, describe the

bending of the prismatic body (which simulates
the plane strain state in the solid mechanics) in

the Ozx and Ozy planes, respectively, and A&?,

— the increments according to the detected de-
formation bending along the fibers x =y =0.

The solution algorithm is the same as in [12].
NUMERICAL SOLUTION

The explicit scheme of the finite difference
method was used with a variable partitioning
step along the axes Ox (M elements) and Oy (N
elements). The step between the split points was
the smallest in the area of the layers contact and
at the boundaries of the computational domain.
Since the interaction process is fleeting, this did
not affect the accuracy in the first thin layer, ar-
eas near the boundaries, and the adequacy of the
contact interaction modelling.

The use of finite differences [17] with varia-
ble partition step for wave equations is justified
in [18], and the accuracy of calculations with an
error of no more than

O((Ax)2 +(Ay)? + (At)z) where AX , Ay and

At — increments of variables: spatial x and y
and time ¢. A low rate of change in the size of
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the steps of the partition mesh was ensured. The
time step was constant.

The resolving system of linear algebraic
equations with a banded symmetric matrix was
solved by the Gauss method according to the
Cholesky scheme.

In [19], during experiments, compact sam-
ples were destroyed in 21 — 23 ms. The process
of destruction of compact specimens from a
material of size and with contact loading as in
[19] was modelled in a dynamic elastoplastic
formulation, considering the unloading of the
material and the growth of a crack according to
the local criterion of brittle fracture. The sam-
ples were destroyed in 23 ms. This confirms the
correctness and adequacy of the developed for-
mulation and model.

Figs. 2 — 29 show the results of calculations
of two layers specimens with a hardening factor

of the material " =0,05. The first high layer
has made from hard steel and its thickness was
equal h=h=01mm, h=h, =0.3mm and
h=h; =0.5mm. The second main low layer

has made from quartz glass. Contact between
two layers is an ideal. Calculations were made
at the following parameter values: temperature

T=50°C ; the size of the contact zone
a=2A=05mm ; L=60mm ; B=10 mm ;

3 3

At=321-10"s; py; =8 MPa; py, =10 MPa;

M =62; N =100. The smallest splitting step
was 0,005 mm, and the largest 2,6 mm
(AXmin = 0,005 mm; Aypin =0,01mm (only the
first layer); AXpax = 2,6 mm ;
AYmax = 0,65 mm).

Figs. 2 —4, 11 — 13, 20 — 22 show the fields
of the Odquist parameter K, normal stresses
Oyx and oy, respectively at the time

t, =257 :107® 5. The fields of Odquist parame-
ter K, normal stresses oy, and Oy Tespec-
tively are at the Figs. 5 -7, 14 — 16, 23 — 25 at
the time t, =3.82-10° s. Figs. 8 — 10, 17 — 19,
26 — 28 show the fields of K, oy and oy, re-

spectively at the time '[3:5.13-10_6 S
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Fig. 2. Odquist parameter K
when h=h, t =1
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Fig. 3. Odquist parameter K
when h=h,, t =1,
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Fig. 4. Odquist parameter K
when h=hy, T =1,

107
9.9

X

0 o065 14 238
m0-0.005 m0.005-0.01
0.01-0.015

Fig. 5. Odquist parameter K
when h=h, t=1,
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Fig. 6. Odquist parameter K
when h=h,, t=1,
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Fig. 7. Odquist parameter K
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Fig. 8. Odquist parameter K
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Fig. 10. Odquist parameter K
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The radius of propagation of the summary
plastic deformations from the centre of the con-
tact zone with the indenter in the upper layer
(Figs. 2 — 4) at the moment of time t =1; does

not depend on the thickness of the upper metal
layer.

From Figs. 5 — 7 it can be seen that at the
moment of time t =1,, if the metal layer is the

thicker than the plastic deformations in it are the
more intense and the plastic deformations in the
glass layer in the area that borders the upper
metal layer under the zone of contact between
the base and the striker are smaller.

When t =13 (Figs. 8 — 10) the largest values

of the Odquist parameter occur in the thinner
upper layer. When t21t, (Figs. 11 — 19), the

largest normal stresses in absolute value occur
in the upper layer with the smaller thickness.

In the region of the lower boundary of the
lower layer, linked to the rigid half-space, ten-
sile stresses arise. This is due to the wave nature
of the impact process and the rigid adhesion of
the lower surface of the lower layer. Moreover,
the greatest of these tensile stresses occur when
the thickness of the upper layer is greater.

At the moment of time t =1; (Figs. 20 —22)

in the metal layer, the compressive normal
stresses oy, are greater in the thicker layer.

When t21t; (Figs. 23 —28) the maximum com-

pressive (maximum in absolute value) stresses
oyy decrease with the thickness of the layer.

At moment t=13 in the area of the lower

boundary of the lower glass layer, the greatest
tensile stresses will increase with an increase in
the thickness of the upper layer. Most likely, for
this steel, it makes no sense to increase the
thickness of the upper layer more than 0.5 mm.

CONCLUSIONS

The developed methodology of solving dy-
namic contact problems in an elastic-plastic dy-
namic mathematical formulation makes it pos-
sible to model the processes of impact, shock
and non-stationary contact interaction with the
elastic composite base more adequately. In this
work, the process of impact on a two-layer base,
consisting of an upper thin layer of metal and a

22

lower main layer of glass, is adequately mod-
elled. The fields of summary plastic defor-
mations and normal stresses arising in the base
are calculated depending on the thickness of top
metal layer of the composite base. The results
obtained make it possible to design new com-
posite reinforced armed materials.
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3agaya 0 MJI0CKOM 1epOpMHPOBAHHOM COCTOS-
HHUHU ABYXCJIOIHOIO TeJ1a B AUHAMUYECKOH ynpy-
romjacTuyeckoii mocranoske (Yacto II)

Braoucnas boedarnog
AnHoTanmusa. KomnosuTHele Marepuanbl IIH-

POKO HCIIOJIB3YIOTCS B MIPOMBIIIINICHHOCTH U ITOBCC-
ZLHCBHOﬁ JKU3HU. MaTeMaTHdecKoe MOJCINPOBAHUEC
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KOMIIO3UTHBIX MaTEpHUaiOB HAYMHAET aKTUBHO pa3-
pabareBaThes B 50-x 1 60-X TOmax MPOIIOTO BeKa
Komrmo3uTHbIE MaTepHransl HAYUHAIOT aKTHBHO FIC-
MOJI30BATHCS B IPOMBIIIJIEHHOCTH TOJBKO B KOHIIE
70-x TomoB mponuroro crojeTus. C 3TOro BpeMeHH
1 TI0 CeHl eHb WHTepec K KOMIIO3UTHBIM MaTepHa-
JaM He 0cIabeBaet, a 3arpoCchl COBPEMEHHOM MPo-
MBIIINICHHOCTH U MPOU3BOACTBA BCE BPEMsI YBEIHU-
yuBaroTCs. Pacmmpstorcs obiaacty U oTpaciv mpu-
MEHEHUS KOMITO3UTHBIX MaTepuaioB. s pacaeToB
U pa3pabOTKH KOMIIO3UTHBIX MaTEpPHAJIOB UCIIONb-
3yeTcss MHOTO Pa3lIMYHbBIX METONOB. JlaHHas cTaThs
€CTh YacCTh BTOPas OT MPEABIAYIIEH CTaThH, B KOTO-
poil paccmarpuBaeTcs KOHTaKTHAas 3ajlada O B3au-
MOJICIICTBUM yAApHUKA C ABYXCIOWHBIM KOMITO3UT-
HBIM OCHOBAaHHEM B JMHAMHUYECKOHN YIPYTOILIACTH-
YECKOM MaTeMaTHYeCKOW MOCTaHOBKE. DTO KOMIIO-
3UTHOE OCHOBAHHE JKECTKO CIEIUICHO ¢ aOCOIOTHO
TBEPJIBIM TIOYIIPOCTPAHCTBOM. Ero mepBerii (Bepx-
HUWH) CJIOI U3TOTOBJICH U3 CTAJIN, & BTOPOH (HKHHN)
— cioii crekina. CTeko o0IIeAOCTYHBIN JeeBbIid
aMop(HBIA MaTepual, CBOICTBa KOTOPOTO HE IOJI-
JAIOTCS IErpajiallii B pe3yabTaTe MPOIEecCOB CTa-
peHus, kopposuu, nomsydectd. Cioit crekia Bo3-
MOXHO YCHUJIMBATL 3a CUCT apMUPOBAHUA U 3aKaJIKHU.
[ToaToMy KOMITO3UTHBIE MaTepHabl, U3TOTOBJICH-
HbIE Ha OCHOBE CTEKJIa, BAXHBI B COBPEMEHHOM
MIPOU3BOJICTBE MX HCIOJIb30BaHHUE JaeT OOJIBIIOH
sxoHOMHueckui 3 dekt. [Ipeamnonaraercs xectkoe
CIeTIIeHue cioeB Mexay coboii. [Ipomecc ymapa
MOJIETTUPOBAJICS KaK HECTAIMOHAPHAS 3a]1ada C PaB-
HOMEPHO pAaCIpe/IeIeHHOW Harpy3koil B obmactu
KOHTAaKTa, U3MEHSIOIIEHCS TI0 JIMHEHHOMY 3aKOHY.
brumn uccnenoBanbl monist mapamerpa OAKBHCTa U
HOPMaJIbHBIX HaHpH)KeHI/Iﬁ B 3aBUCUMOCTHU OT pas-
Mepa o0JlacTH KOHTakTa. B oTimume oT mpenbiny-
et crareu (Yacts 1) B TaHHOM cTaThe Hccaemyercs
HaTPsHKCHHO-1EDOPMUPOBAHHOE COCTOSHHE, ITOJIS
napamerpa OAKBUCTa M HOPMAILHBIX HANPSHKSHUN
B 3aBHCHMOCTH OT TOJIIWHBI TIEPBOTO (BEPXHETO)
cIIos1.

KuroueBbie cioBa: [Tnockas nedopmarius, yaap,
KOMITO3UTHBIE MaTepUajbl, ApMHUPOBAHHBIC MATEPH-
aJpl, OpOHHPOBAaHHBIE MaTepPHAIIbI, YIPYTOIJIaCTH-
yeckas, nedopmariusi.
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