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Abstract. This paper presents the development
of an adaptive software component for forecasting
the energy consumption of electric vehicles along
planned routes. It includes a conceptual framework,
architectural design, and modular software
composition, introducing mathematical models for
managing energy consumption with a model-based
design approach for precise predictions and
optimization. The importance of data sources such
as route information, vehicle condition, and driver
behavior is emphasized to create a comprehensive
state vector for energy optimization.

Following ISO 26262 and A-SPICE 3.1
standards, the implementation uses a model-based
approach with Simulink and aligns with the V-
Model for rigorous validation. The methodology
details segmenting routes and optimizing energy
consumption for each segment, considering driving
style and environmental conditions. The gradient
search method adjusts energy consumption to
minimize usage while maximizing comfort and
ensuring route completion.

This research lays the groundwork for future
advancements in predictive energy management
systems for electric vehicles, with potential real-
world applications. Future work will focus on
refining predictive models, exploring machine
learning for improved accuracy, and integrating
real-time data from connected vehicle technologies
for dynamic optimization.

Keywords.  Electric  vehicles, energy
consumption prediction, model-based design,
energy management system, route optimization,
driving behavior, adaptive software, ISO 26262, A-
SPICE 3.1, gradient search, Simulink, vehicle state
vector, modular architecture, predictive models,
machine learning, real-time data integration,
connected vehicle technologies, battery
management, comfort optimization.
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INTRODUCTION

Modern cars are complex networks of
computing and control devices, each with its
own topology that imposes specific properties,
limitations, and norms. This distributed system
for data collection, communication, and control
enables the formation of a detailed state vector,
accurately describing the car's condition for
effective technical management decisions.

Simultaneously with the development of
control means and internal communication of
the car, its energy system also develops. This is
particularly relevant for electric vehicles
equipped with mobile power plants or electric
batteries.

The advantages of using electric power
elements for vehicle movement are significant
and varied. Firstly, electric vehicles (EVs) help
reduce or even eliminate fuel costs, as
electricity is cheaper and more stable in price
compared to gasoline [1], [2]. Secondly, EVs
contribute to environmental conservation by
producing fewer emissions than their gasoline
counterparts, thus aiding in the fight against
climate change [3], [4]. Additionally, electric
vehicles support energy independence,
reducing reliance on imported oil and
promoting the use of locally sourced renewable

energy [1], [2].
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However, there are still unresolved issues
related to the wvehicle's range on electric
traction. Modern vehicles are limited in their
range to approximately 100-450 kilometers
(about 279.62 mi) per charge, depending on the
model and battery capacity [3], [12].

The issue of increasing the range is
addressed by several approaches, including
improvements in  battery  technology,
development of more efficient power
management systems, and the expansion of
charging infrastructure [2], [4]. Another
approach to increasing the vehicle's range is to
introduce methods of energy consumption
prediction with the search for an optimal
consumption strategy for each energy
consumer. This strategy also considers the
dependence of expenses on driving style.

Therefore,  predicting the  energy
consumption of a vehicle for moving along a
given trajectory is the subject of this study. The
object of the research is the development of
application-level software (business logic) for
predicting energy consumption and forming a
system of recommendations for the driver.

The task of minimizing a vehicle's energy
consumption, as well as the task of predicting
its range, is primarily a task for battery
engineers and component designers of the car
both in its details and as a finished product. But
secondly, it is also a task for companies that
develop software, especially in connection with
the concept of building a Software-defined
vehicle. Thus, N-iX corporation, within which
these studies were conducted, approached the
described subject through the prism of
Predictability of energy consumption and
energy management system, which is a
software  solution for vehicle energy
management.

PROBLEM STATEMENT

The objective of this research is the
development of a composition of software tools
and individual software components for a
vehicle that enables the optimization of the
electrical consumption scenario of each critical
node of the wvehicle. This ensures the
achievement of the planned route with the
maximum level of comfort.
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It should be noted that the problem
involves solving a multi-criteria optimization
task of a bi-criteria optimization of a multi-
parameter function with nonlinear
dependencies between parameters.

Two criteria are proposed.:

1. Ride comfort (minimizing the deviation
between the ride properties set by the driver and
the actual battery capacity allocated to each
consumer).

2. Minimization of energy consumption
(minimizing the energy consumption of each
analyzed vehicle energy consumer).

Regarding energy consumers, the aim is to
create a software composition that allows for
the customization of energy consumers. The
basic composition should manage the main
consumers, namely Powertrain, HVAC,
Suspension, Battery Climate Control System,
and expenses related to driving style.
Additional consumers can be added by creating
corresponding  software components and
adding them to the composition.

Regarding information sources, several
information sources are needed for energy
management, which can be grouped as follows:

- Information about the route;

- Information about the
condition;

- Information about the driver and driving
style.

All three basic information sources create
a state vector of the vehicle. This state vector,
together with the criteria for optimizing energy
consumption, forms the problem statement for
nonlinear optimization. Solving this problem

vehicle's

leads to obtaining an optimal energy
consumption scenario.
MATERIALS AND METHODS

According to the defined object and subject
of the research, as well as the aim of the work,
the outcome is the creation of a software
composition that can be applied as business
logic and function as an application within the
ECU. The composition should meet the design,
documentation, construction, testing, and
integration requirements according to norms,
standards, frameworks, and guidelines
applicable in the automotive sector.
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This composition includes an ASIL A class
component. The SDLC V-Model and ISO
26262 [15] and ISO 33050 [16] standards were
applied for its development. Project measures,
as well as processes during preparation,
development, and support, complied with the
A-SPICE 3.1 framework. Technologically, they
correspond to level 3 (Established). The teams
applied the SAFe 6 project management
methodology.

A Model-based approach based on
Simulink (license 41148027) was used. This
approach was employed from the requirement
engineering stage to the integration stage. The
software component includes means for
interacting with the driver. For demonstrating
the interaction, a virtual reality solution based
on Carla Simulation was created. Physical
steering wheels and pedals from Logitech were
used for driver input. C99 and Python layers
were used to integrate Carla with Simulink and
the steering wheel and pedals with Simulink.

For obtaining route data and information
about road temperature and quality, Google
Maps services were used. Python scripts were
employed to link Google Maps with Simulink.

The MathWorks ecosystem, including
Simulink, System Composer, Requirement
Toolbox, Embedded Coder, Advisor, Simulink
Test, Powertrain, and Instrument Control
Toolbox (license No. 41148027), was used for
building the composition, components,
integration, and requirement engineering.

THE TASK OF FINDING THE OPTIMAL
ENERGY CONSUMPTION SCENARIO

There are several approaches to
formulating the task of finding the optimal
energy consumption scenario. For example, [8],
[9] define it as minimizing energy expenditure.
In contrast, [10], [11] use Markov chains to
predict step-by-step expenses.

At N-iX Corporation, we approached this
task creatively. We decompose the entire
vehicle route into segments (the length of the
segment is chosen dynamically, depending on
changes in its characteristics. For example, if
the road is straight, without significant changes
in road angle or temperature, we consider this
part of the route as one segment). After
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decomposition, we request the required current.
This request is made to the consumption model,
which we describe for each consumer. Thus, we
estimate consumption for each segment of the
route we need to cover. Then we request the
driver’s profile. Based on statistical data, we
understand the driver’s driving style. We
interpret this style as an over-expenditure
coefficient for each consumer. Next, having the
consumption values for all consumers for all
route segments, we can estimate whether the
battery charge will be sufficient to cover this
route.

Obviously, the route can be covered
quickly or slowly, with the air conditioner at
maximum power or turned off, using adaptive
suspension, or switching it to passive mode.
And it is also obvious that all this changes
energy consumption. Therefore, the task of
finding the optimal energy consumption
scenario is to find the operating modes of each
consumer so that we can cover the planned
route.

It is important to note that the best chance
of reaching the planned route is to turn off
everything that is possible and switch the
powertrain to the highest economy mode. But
this is not a comfortable ride. Therefore, we
introduced another criterion — maximizing
comfort.

Thus, if we understand that we can reach
the destination, and if the air conditioner
operates in normal mode (provided that the
driver wants it to be turned on in normal mode),
we will propose to turn it on in this mode. If we
cannot reach the destination in this mode, we
will propose a balanced combination of modes
for all consumers to evenly reduce comfort so
as not to critically reduce it anywhere.

And, obviously, if we estimate the impossibility
of covering this route at all, then after the
appropriate calculation, we notify the driver.

Thus, the mathematical model for finding
the optimal energy consumption scenario is
proposed as follows:

1. Minimization of energy consumption (E ):
a. Minimization of the total energy
consumption of each component.
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b. We define the function E as the sum of
the energies
component:

consumed by each

E= Epowertrain + EHVAC + Esuspension
+ EbatteryCC + Edriver

2. Maximization of comfort (C ):

a. Minimization of the deviation between
the ride properties set by the driver and
the actual battery capacity allocated to
each consumer.

b. We define the comfort function (C ):
A

where Ei - is the desired energy consumption
set by the driver for the i-th component, and Ei
- is the actual energy consumption for the i-th
component.

Then, the Lagrange function for this task can be
written as follows:

L(E,A) = E+ A(C—a)

where A - is the Lagrange multiplier, and « - is

the constant that determines the balance
between energy consumption and comfort.

We form a system of equations. So, to find
optimal values, it is necessary to find the partial
derivatives of the Lagrange function with
respect to each variable and set them to zero:

oL

3E =0, ==0 (1)
For the segment of the route, we form a current
request:

max(i)

23

where U; - is the network voltage for the i-th
component.

Driver profile consideration is carried out as
follows:

segment =
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all segments

z Esegment

segment

Egriver = B

where £ - is the coefficient that accounts for the
driver’s driving style.

OPTIMIZATION OF CONSUMPTION FOR
EACH SEGMENT OF THE ROUTE

The objective function will be as follows:

MINE = E

powertarin + EHVAC + Esuspension
+ Edriver

with constraints:
- Constraints on energy consumption for each

component:

Ei< Enaxii = 1,..,n
- Constraints on total energy consumption:

n
Z Ei <Etotal

- Constraints on comfort reduction:

n
- Z(El - Et(;tal)z = Cmin

Finding optimal values E, A is based on
solving equation (1), which can be presented in
the following form:

aEl = (E +YT LE)—b)=0 (2
for constralnts. gj(E)—bj=0,j=1,..,m.

This completes the formulation of the
optimization task, ensuring a balanced
approach to minimizing energy consumption
while maximizing driver comfort.

FORMATION OF THE SOFTWARE
COMPOSITION

According to the A-SPICE framework, the
software development process includes a series
of preliminary stages. These stages will be
omitted in this publication as they fall outside
the scope of its scientific interest. The system
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engineering process (SYS A-SPICE group) is
partially considered here, as well as the ENG
group, in accordance and proportionate to the
relevance of the subject of the work. The SUP
and MNG groups are completely omitted in the
publication.

DISTINGUISHED COMPOSITION
COMPONENTS

The composition is divided into three
groups of components. It is assumed that all
components will be deployed on a single ECU.

First Group - Core Composition. Contains
components that are not subject to
customization. This group of components
includes:

- Prediction SWC;

- Powertrain SWC;

- DriverProfile SWC.

Second Group — Plugins. Contains
mathematical models of consumers. It allows
for the current request to the power source. It
also allows for modeling current consumption
under different operating modes in search of the

predict

>
>
t rature_D1 - o
predict_t map
roadquality_D1 >

plugins

powertrain

Fig. 1. Software Composition

While changing plugins should not affect
the composition, the entire second group of
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optimal combination. Each of the plugins has
two subcomponents. The first subcomponent is
used for iterating through energy consumption
modes in search of an optimal configuration.
The second subcomponent provides a current
request in the selected mode depending on the
operating conditions. This group's software
components allow for customization according
to the wvehicle's specifications. Typical
representatives of the second group of software
components include:

- ClimatControl SWC;

Suspension SWC;
External Temperature SWC;
TirePressure SWC.

Third Group — Wrappers. They are used for
software testing, debugging, and demonstrating
its operation. Typical representatives of
software components in this group include:

- GoogleMap SWC;

- HMISWC;

- Modem SWC.

The proposed composition of software
components is shown in Fig. 1.

j Prediction SWC
>—
>

BatteryBehavior

Modem_sSWC

Driverprofile sSWC

Map_ SWC
PP

Roadquality sSWC

- ( ExteraniTemperature_sSWC
-

ClimateControl

Powertrain_sSWC

software components is grouped into the
Plugins SWC component, as shown in Fig. 2.
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g2Rg28g8eRR8 RS 55555555555+5

10SuspensionPlugins
PluginsComfortTemperaturePlugins
PredictionApprovePlugins
PredictionClimateControlCorrectionPlugins
PredictionExternalTemperatureCorrectionP!
PredictionRoadQualityCorrectionPlugins
TrainCurrentPrediction
TrainEstimatedCurrentPrediction
TrainRecommendedSpeedio
PluginsBatteryStatusPrediction
PluginsClimateControliComfortPrediction
PluginsClimateControlCurrentDriiver
PluginsClimateControlEstimatedCurrentDriver

PluginsExtemalTemperatureCurrentDriver

Fig. 2. Decomposition of Plugins into a Separate Group

A typical component of the composition is
composed according to the MISRA AC GMG
[13] or MAAB [14] guidelines. Its structure
includes two subcomponents mentioned earlier
(one for finding a new consumption plan using

the gradient descent method, and the other for
performing predictions of expenses for
subsequent parts of the route). The typical
structure of such a software component is
shown in Fig. 3.

Input:
PredictionRoadQualityCorrection - received limitation of power consumption
PredictionApprove - command to approve the limitation and to send recommendation to 10
Description: returns the real power consumption of the car suspension system and other road quality related systems for the rest of trip.
Returns the estimated power consumption of the car suspension system and other road quality related systems for the rest of trip and
estimated comfort level using the current level of limitations. Tranlates approved recomendation about reducing power consumption to 10
Output:
TotalEnergy - real power consumption of the car suspension system and other road quality related systems for the rest of trip
RoadQualityEstimatedCurrent - estimated power consumption of the car suspension system and other road quality related systems for the
rest of trip with the current level of limitations.
RoadQualityComfortPrediction - estimated comfort level of the car suspension system and other road quality related systems for the rest of
trip with the current level of limitations

0. "

GetTripStructsize

1)
<PredclonRoadQualtyCorecton> -&
PredictionRoadQuai

tyCorrection

<(redicti WualilyCorremonj

for{..) 1l

<Datasize> <TotalEnergy>

D

TotalEnergy

2
RoadQualiyEstimatedCurrent

<PredictionApprove>
Precicionapprone

()
RoadQualityComfortPrediction

<RoasQualtyEstimatedCurent>
for{..}
RoadQ:
RoadQualtyComtoaprediton>
o)
else. = v
#ul)
[PredictionRoacQualityCorrection] lityCortecton
P <RecommendedSuspensionio>

Fig. 3. Typical Structure of a Software Component with Two Separate Subcomponents
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The Prediction SWC and DriverProfile
SWC software components are shown in 2. Penalty Deduction:
Figures 4 and 5, respectively. 1<

The structure of the Prediction SWC E, = —Z(ri —a;)?
includes two subcomponents. One performs the 2 =i
tasks of estimating costs for the entire route that 3. Backpropagation Update:
the car still has to cover. The second
subcomponent searches for the optimal energy P,,; =P, — BR,
consumption scenario according to system (2).
The structure of the DriverProfile SWC OE,
includes logic for accruing and writing off Wiy = W — 1N E
"penalties" imposed on the driver for ignoring
recommendations. Penalties are deducted for 4. Hysteresis Effect:
following these recommendations. The accrual
and de.duction model is hysteresis-based and is Py = {{ P, + aE, if E,
set by interpolation tables.

The mathematical model of DriverProfile > 8} OR{P,

SWC is shown below. . — BR.if E; < 8}
For driver from

D = {dll dz, T dm}

1. Penalty Accrual:
Pt+1 = Pt + O(Et

[BatteryStatus]]

e

OrmerCunent- InpulCuTeresATey

[ —
(ProbeOut]
<PrebeOu>
Clrmac

[Comfortin]

frRse— " — . D
o o e
Comtortn]

ET——

8,
OutpuEnatie Subsysten

[ProbeOut)

OgtimizatonSubsystem

[Energyin]
i

ClimateContoi

<RosoQuain
RoacQualiyEstmatedCuront

Fig. 4. Prediction SWC Software Component Model

&
PrecictonDriverCorrectorPlugins
TrainCurrentDrtver v )
S DiiverTrainCurentPrediction
[speedViolationPointsOut
@ Driverprofie_ViolationAssessment_s
I0CurrentSpeedTran
1D7()

® e g |

TrainRecommendedSpeedi
X
@ DriverTrainEstimatedCurrentPrediction

TrainEstimatedCurrentDriver

Fig. 5. DriverProfile SWC Software Component Model (the main subsystem only)
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The mathematical model, which is part of
the Powertrain SWC, cannot be disclosed due
to NDA.

SETTING TRIGGERING TIME OF
COMPONENTS WITH EACH OTHER

Time-sampling for all SWC components is
crucial for ensuring synchronized and efficient
system operation. Each SWC component
triggers at specific intervals, which are recorded
as time samples. These time samples help in
understanding the interaction and behavior of
components under different  operating
conditions.

In the histogram (Figure 6), we observe the
distribution of triggering times for various
components:

- Prediction SWC triggers primarily between

10-13 milliseconds.

- Powertrain SWC triggers mainly between
15-18 milliseconds.

- DriverProfile SWC triggers mostly between
19-22 milliseconds.

- ClimatControl SWC triggers predominantly
between 25-28 milliseconds.

- Suspension SWC triggers primarily between
30-33 milliseconds.

- ExternalTemperature SWC triggers mainly
between 35-38 milliseconds.

- TirePressure SWC triggers mostly between
40-43 milliseconds.

- GoogleMap SWC triggers predominantly
between 45-48 milliseconds.

- HMI SWC triggers primarily between 50-53
milliseconds.

- Modem SWC triggers mainly between 55-58
milliseconds.

Distribution of Triggering Times for SWC Components

7t Prediction SWC
Powertrain SWC
DriverProfile SWC
ClimatControl SWC
6l Suspension SWC
ExternalTemperature SWC
TirePressure SWC
GoogleMap SWC
5t HMI SWC
Modem SWC
Tat
c
o
=
o
o
-
[
3 -
2 -
1 -
0 1 1 1 1 1 1
10 20 30 40 50 60

Trigger Time (ms)

Fig. 6. Timesample histogram

This detailed time-sampling allows for
precise coordination and optimization of
component interactions, ensuring that the
system operates smoothly and efficiently. By
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analyzing these time samples, we can identify
potential areas for improvement in
synchronization and performance, leading to a
more robust and reliable system.
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COMPONENTS FOR ENVIRONMENT
VIRTUALIZATION AND STUB
REALIZATION

The construction of these components
significantly depends on the available software
licenses. By basing solutions on Simulink, an
alternative approach can be taken. Since this
software section is more for demonstrating
capabilities rather than being deployed as a
product, certification is not required. Therefore,
the use of third-party software is acceptable.

For external solutions such as GoogleMaps,
steering wheel interfaces, Carla simulation, or
practically any solution outside the MATLAB
ecosystem, it is proposed to use the Instrument
Control Toolbox, which includes a UDP toolKkit.
This type of task is effectively managed using
sockets.

ACHIEVING REAL-TIME

Achieving  real-time operation is
challenging. Simulink does not inherently
support real-time execution as the simulation
time of the system can differ from physical
time. Real-time performance can be achieved
after compiling the software product and
running it as an application.

Table 1. Testing stages of software composition

TESTING AND INTEGRATION

According to the V-Model process, testing is
inseparable from the development process.
Building a testing process for ASIL-A
according to ISO 26262-6 [15] includes five
stages, conducted sequentially. Stages and
completion criteria for this composition are
provided in Table 1.

In accordance with ISO 26262-6 [15]
recommendations, the processes are conducted
using certified tools or subject to further
verification. Therefore, in this work, it is
proposed to use the verified Simulink Test
toolkit with additional instruments such as Test
Manager, Coverage, and Reports, to remain
within a single software development
ecosystem.

The completion criteria for the testing stages
are proposed as indicated in Table 2.

The stages "Validation of composition on
virtual target (ViL)" and "Testing on real ECU
(ViL)" are not completed to date. Their impact
on the product will be published additionally.
Accordingly, integration as an ECU application
is not the subject of the current publication.

Stage Metrics

Description

Static analysis of
Simulink model

Diagnostic Coverage (DC),
Single Point Fault Metric (SPFM)

Model analysis to identify defects and potential
problems. Measuring code coverage and
diagnostic efficiency for testing evaluation.

Executing model-level tests based on a

Model unit % of tests executed, Common simulation environment. Measuring the
testing (SiL) Cause Fault Metric (CCFM) percentage of successfully executed tests and
the metric for partial failures.
Integration o . Testing interactions between different
: % of integrated components, .
testing of e . components at the hardware level. Evaluating
Probabilistic Metric for random .
components . the percentage of successfully integrated
. Hardware Failures . A
(HiL) components and integration time.

Validation of
composition on a

virtual target
(ViL)

DC, Failures In Time (FiT)

Testing the entire composition on a virtual
platform. Measuring diagnostic efficiency and
the number of failures per trillion hours.

Testing on a real

ECU (ViL) FiT, Latent Fault Metric (LFM)

Testing the composition on a real ECU to
verify stability and identify defects. Measuring
the number of failures per trillion hours and
latent faults.

SMART TECHNOLOGIES:
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Table 2. Completion criteria for testing stages

Testing stage

Completion criteria

Static analysis of Simulink model (FMEDA)

Completion of the analysis when DC > 90% and
SPFM > 99%. All identified critical defects must
be corrected and confirmed by repeated analysis.

Model unit testing (SiL)

Completion of testing when % of successful

tests > 95% and CCFM < 1 FIT. All critical

defects must be corrected and confirmed by
repeated tests.

Integration testing of components (HiL)

Completion of testing when % of integrated
components > 95% and PMHF < 10 FIT. All
identified critical defects must be corrected and
confirmed by repeated tests.

Validation of composition on virtual target (ViL)

Completion of validation when DC > 95% and
FIT < 10 per trillion hours. All critical defects
must be corrected and confirmed by repeated

tests.

Testing on real ECU (ViL)

Completion of validation when DC > 95% and
FIT < 10 per trillion hours. All critical defects
must be corrected and confirmed by repeated

tests.

IMPLEMENTATION AND PUBLICATION
OF RESULTS

The results of the work have been
implemented as a Proof of Concept (PoC) and
have been presented at events such as
MathWorks Automotive Conference 2024 [5],
featured at the N-iX company booth; a
MathWorks webinar titled “Energy
Consumption Prediction for Electric Vehicles”

[6]; and described in N-iX company
publications [7].
THE AMPERE POC

From Figure 7(a), the structure of the
Ampere project is evident, which is built
according to the concept described in the
publication. In this Proof of Concept, the focus
is on cooperation with the semi-realistic
environment. To achieve this, Carla,
GoogleMaps, Steering, and an Android Tablet
(driver authorization, destination coordinates
determination, communication of optimal trip
data to the driver) were used. Communication
protocols UDP and ProtoBAFs were employed
for this purpose.

Figure 7(b) shows the application as seen
by the user.

SMART TECHNOLOGIES:
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CONCLUSION

This study details the development of an
adaptive software component to predict energy
consumption for electric vehicles on planned
routes. It emphasizes a modular and scalable
architecture,  incorporating  mathematical
models to manage consumption levels. Key
data sources such as route information, vehicle
condition, and driver behavior form a
comprehensive state vector for optimizing
energy use.

The implementation adheres to ISO 26262
and A-SPICE 3.1 standards, using a model-
based approach with Simulink, and aligning
with the V-Model for rigorous testing. The
gradient search method adjusts consumption to
minimize energy use while maximizing
comfort, ensuring the vehicle completes its
route efficiently.

Components for environment virtualization
and stub realization were developed using
Simulink and third-party software, managing
external solutions through the Instrument
Control Toolbox and UDP sockets. Achieving
real-time execution involved compiling the
software product and running it as an
application.
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Android
Tablet

Steering &
pedals

Google

Carla Maps

Recommendations —|

Map Integration
Dy

rive params
" Current Mode

Driver Profile

T
Road
segment Prediction

Core

Plugins

ProtoBufs

‘ Real time environment ‘

Fig. 7. The Ampere by N-iX. a - generalized view; b - user view

This Proof of Concept has been showcased
at industry events, demonstrating the feasibility
of advanced predictive models for energy
management in electric vehicles. Future work
will focus on refining predictive models,
exploring machine learning for improved
accuracy, and integrating real-time data from
connected vehicle technologies to dynamically
optimize energy consumption. These efforts
aim to enhance the efficiency, reliability, and
user-friendliness of energy management
systems, supporting wider adoption and
sustainability in the transportation sector.

By addressing these observations and
incorporating the suggested revisions, the paper
will improve in clarity, readability, and overall
effectiveness.
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AJanTHBHMI MPOrPAMHNIA KOMIIOHEHT ISt
NMPOrHO3YBAHHSA €HEProCHOKUBAHHA
€JIEKTPOMOOiJisi Ha 3aIUVIAHOBAHOMY MAPIIPYTi

Jmumpo I ymennuti
AHoTtamis. Y pgaHii poOOTi TpeacTaBICHO
PO3pOOKY alanTUBHOIO MPOrPaMHOI0 KOMITOHEHTA

ISt MPOTHO3YBAaHHS €HEePTOCIIOKUBAHHS
€JIEKTPOMOOLTIB Ha 3aIUIaHOBaHUX MaplpyTax. Bin
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BKJIIOYA€ KOHIETITYyalbHY OCHOBY, apXiTEKTYpHHUMH
IU3aiiH 1 MOMYNBhHY KOMIIO3HUIIII0 TMPOTPaMHOTO
3a0e3I1eueHHs], BBOASYM MaTeMaTHYHI MOAESIl s
YIpaBIiHHA CHOXMBAaHHAM €HEpPril 3 MOIEIbHUM
iIXOOM J0 MPOEKTYBAHHS ISl TOYHHUX IIPOTHO3IB
1 omruMmizalii. BaxnmHuBIiCTh KEpen HaHWX, TaKUX
K 1H(OopMaLlis PO MapUIPYT, CTaH TPAHCHOPTHOTO
3aco0y Ta MOBEAIHKA BOISA, MiIKPECIIOETHCS UIS
CTBOPECHHS KOMIUIEKCHOTO BEKTOpa CTaHy JuIs
onTHMI3aIii eHeprii.

Jorpumytouncek crangaptie ISO 26262 i A-
SPICE 3.1, peamizaris BUKOPUCTOBY€E MOAEITHHUI
migxin 13 Simulink i y3romkyerbes 3 V-Momemtto
Uil cyBOpoi mepeBipku. MeTomosnorisi AeTanbHO
PO3MOiNsAe MapIIpyTH Ha CETMEHTU Ta ONTUMI3Ye
CIIOKMBAaHHSA C€HEprii g KOKHOTO CETMEHTY,
BpPaxOByIOYM  CTWIb  BOAIHHA Ta  yYMOBH
HABKOJIMIIHBOTO cepeoBHIa. MeTo/] rpaJieHTHOTO
MIOIIYKy PEeTYNIO€ CIOXWBaHHS €Heprii, 100
MiHIMI3yBaTu CIIO)KMBaHHS, MaKCHUMIi3yHOUl
KOMQOPT i TapaHTYIOUH 3aBEPILIECHHS MApUIPYTY.

Ile pmocmiypkeHHA 3aKiaga€ OCHOBY UL
MalOyTHIX JOCSTHEHb y CHCTEMaX HpPOTHO3HOTO
KepyBaHHS CHEPTi€l0 I CIIEKTPOMOOLTIB i3
MOTEHIIHHUM 3aCTOCYBaHHSIM y PeajbHOMY CBITi.
MaiibytHss pobora Oyme 30cepemkeHa Ha
BJOCKOHAJICHHI TPOTHO3HUX MOJE/CH, BUBYCHHI
MAIIMHHOTO HAaBYaHHS JJIsI MiABHIICHHS TOYHOCTI
Ta IHTerparlii JaHuX y peasbHOMY Yaci 3 TEXHOJIOTiN
MIIKTIOYEHNX  TPAHCIOPTHUX  3aco0iB s
JIUHAMIYHOI OITHUMI3ali.

Karouosi cJIoBa. Enexrpomo0ini,
nepen0adeHHs] E€HEeProCIOKUBAaHHSA, MOICTBHUM
IM3aifH,  CHCTeMa  yNpaBliHHA  EHEpri€lo,
ONTUMI3alliss MaplpyTy, TOBEAIHKA BOJIHHS,
ajanTUBHE nporpamHe 3abesneudeHss, [SO 26262,
A-SPICE 3.1, rpamientHuii momryk, Simulink,
BEKTOp CTaHy aBTOMOOLISI, MOJYJIbHA apXiTEKTypa,
MIPOTHO3HI MOJIENi, MAITUHHE HABYAHHS , IHTETrpaIlis
JMaHUX y peajbHOMY Yaci, MiAKIIYeH] TEXHOJIOTIl
TPAaHCHOPTHHUX 3aC001B, KEPYBAHHS aKyMYJISTOPOM,
OINITUMi3allis KOMOPTY.

77



